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Abstract: The recently patented Gas Formation Model scuba diving decompression 

algorithm  presents  a  challenge  in  terms  of  practical  design  for  ultra-low-power 

battery-operated scuba dive computer applications.  In its original form, it requires 

thousands  of  floating-point  calculations  to  be  completed  within  hard  real-time 

bounds,  in  order  to  calculate  the  diffusion  and convection  of  nitrogen  gas  in  the 

human  body.   Combining  software  optimization  techniques  with  a  customized 

processor core design, this study presents the first attempt to design custom hardware 

for GFM in order to reduce the energy and area footprint of the processor required, 

while at the same time meeting aggressive performance goals.  The resulting design 

outperforms ARM9 and ARM7 devices by roughly a factor of 2.5 to 3, amounting to 

60%-66%  speedup,  respectively,  with  a  reasonable  gate  count  and  meeting  the 

specifications given in the study.    
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Chapter 1: The Application

Scuba Diving - IntroductionScuba Diving - Introduction

Scuba diving is a sport that involves diving underwater while breathing a 

particular mixture of pressurized gas.  Some divers stay at shallow depths (less than 

30 ft) for relatively short times (less than 20 minutes), while others dive to relatively 

deep depths for considerably longer times.  Many so-called  “recreational divers” 

engage in this activity simply for pleasure, while other divers dive as part of their job, 

or for military purposes.  The term “technical diver” refers to divers that dive to great 

depths, for example inside underwater caves, and follow particular scheduled stops 

for safety as they ascend to the surface.  There are many types of diving and types of 

divers, but one thing modern divers have in common in recent years is the use of a so-

called “dive computer”, which will be explained later in this paper.  For now we will 

use the definition of a dive computer being a device used by scuba divers in order to 

keep track of the state of the gas in the diver's body, and to otherwise provide a safe 

path to the surface at all times under any situation.  

When a diver is under water, as the surrounding ambient pressure on the diver's 

body increases at depth, the higher concentrations of oxygen and nitrogen molecules 

in the breathing mixture diffuse into the blood and tissues of the diver's body, and as 

the diver surfaces, they go in the reverse direction, always seeking an equilibrium 

state.  To understand this more fully, we can consider the Ideal Gas Law [24] from 
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basic chemistry.  The law states that the pressure (p) times the volume (V) of an ideal 

gas is equal to the number of moles of gas (n) times the Universal Gas Constant (R) 

times the temperature (T) in Kelvin.  

This is more simply stated as given in equations (1) and (2). 

pV = nRT Equation 1

n = pV / RT Equation 2  

When a diver goes underwater to some depth, the weight of the water above the 

diver contributes to an increased pressure on the diver, proportional to depth. 

Considering the same (or only slightly different) temperature, and that the average 

volume in the diver's lungs does not change, we can see from Equation 2 that since 

V/RT is constant, and p is increasing, the only conclusion is that (n) is also 

increasing.  In other words, when a diver is at depth, there is an increased number of 

moles of gas in the diver's lungs.  To say there is an increased number of moles of gas 

in an unchanging volume (the lungs) means that there is a higher concentration of 

that gas in that volume.  That gas could be any number of mixtures commonly used 

for diving, but for simplicity let us consider that common air (roughly 21% Oxygen 

and 79% Nitrogen) is used.  The measure of concentration used in the diving industry 

is called the “partial pressure”, denoted PPX (where X denotes the gas, ie... PPO2), 

and is calculated as in Equation 3.  

PPX = Abs. Pressure * % Gas X in mixture Equation 3
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For example, at 6 bar of absolute pressure, in normal air, the partial pressure of 

Oxygen, termed PPO2, is 1.26 bar absolute, and for Nitrogen (PPN2) is 4.74 bar 

absolute.  Note that there are certain known safety limits for example on PPO2 levels, 

where breaching those limits can cause maladies such as oxygen toxicity .    

The diver's lungs have an increased concentration of gas at depth and we note 

that the diver's blood and tissues initially do not.  If the diver stays at depth for any 

amount of time, the gas in the lungs with higher concentrations of oxygen and 

nitrogen will start to dissolve into the the surrounding blood and tissues in the diver's 

body.  Eventually if the diver stays at the same depth for a long enough time, the 

concentrations in the lungs and in the blood and tissues of the body will be equalized. 

The different parts of the body have different characteristics of solubility and 

diffusivity that govern how quickly this occurs, but it occur nevertheless.  In other 

words, a diver that stays at depth for some significant amount of time has an 

increased concentration of oxygen and nitrogen in their blood and tissues.  

The second part to this story is that when the diver surfaces or otherwise 

ascends to an area of lesser surrounding ambient pressure, the higher concentrations 

of gas that are in the blood and tissues of the diver's body now come “out of solution” 

and are exhaled through the lungs.  A danger exists when excess nitrogen is coming 

out of solution as the ambient pressure decreases, whereby if the diver is not careful it 

can come out too quickly and form free gas in the body, and the diver can get 

decompression sickness (DCS) [1]-[4].  DCS is commonly referred to as “the bends”, 
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and can be severely painful, and can be fatal.  The cause of DCS is believed by many 

as having to do with free nitrogen gas forming in the body[1][3].  Various theories[1]

[3][4] suggest differences in terms of when, where, how, and in what form the free 

gas develops, but the general belief is that in fact it is this free nitrogen gas that 

causes it.  As far as the recently patented Gas Formation Model (GFM)[1] is 

concerned, it is precisely that free gas that causes DCS and GFM actually calculates 

in real-time when and under what conditions fee gas will form, as well as precisely 

how much is formed. 

One function of a scuba diving computer [4] is to compute the amount of time a 

diver can stay at the depth before surfacing would result in the diver getting sick.  The 

Gas Formation Model calculates the diffusion of nitrogen gas into and out of the 

blood and tissues in the body and through he lungs, and the precise time that nitrogen 

gas layers break and allow nitrogen to be free in the body.  The amount of free gas 

volume (FGV) is calculated and correlated to the percent probability of getting DCS. 

An important function, then, of a GFM-based dive computer is to use the GFM 

algorithm to calculate the amount of free gas in the body, and to predict the future 

free gas volume (given various future dive profiles), in order to give the diver a safe 

path to the surface, under any situation.  In addition to these predictive calculations, 

GFM also can be used to give a quantitative measure of free gas in the body in real-

time.  
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Note that GFM is truly a real-time algorithm, in that it uses ambient pressure as 

well as real physiological input parameters to calculate real quantities of free gas in 

the diver's body in real-time.  This FGV calculation is a novel approach to the design 

of a dive computer, and exactly how intensive the algorithm is and what is required to 

implement it efficiently in hardware is the subject of this thesis.  This study represents 

the first such attempt to explore a custom hardware design for GFM. 

Definition of TermsDefinition of Terms

Before we continue, a brief definition of terms used in this paper is in order, 

and so the concepts of an “immediate ascent”, “future prediction”, and a “dive 

profile” will be defined here.  A “dive profile” is a loose term for a set of points, 

(time, depth), for which we require a calculation of free gas.  Note that the dive 

profile is typically expressed not in (time, depth) form, but in the sentence form 

“<depth> ft for <time> minutes”.  For example, suppose a a diver has descended to a 

depth of 100ft, and has been there for 5 minutes.  Then suppose the diver ascends to 

the surface where he stays for 10 minutes.  The dive profile in this case is then “100 ft 

for 5 minutes, then 0 ft for 10 minutes”.  Dive profiles are used to describe the input 

vectors for the GFM algorithm and its application, and they form the basis of how 

GFM is tested and analyzed.  

A “future prediction” in this paper will be used to refer to the calculation of free 

gas, as calculated by GFM, corresponding to the set of (time,depth) inputs for a 
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particular future dive profile.  These predictions are calculated exactly the same way 

as the real-time state of the algorithm is calculated, only that prior to execution, a 

copy of the algorithm state is made and prediction calculations are executed only on 

the copied data, so as to not affect the real-time state calculation.  We will use the 

term  “immediate ascent” (IA) prediction for a special type of future prediction where 

the dive profile is such that the diver is assumed to immediately ascend to the surface. 

This is as opposed to assuming the diver stops at some intermediate depth(s), or stays 

at the current depth for any amount of time.    

How GFM WorksHow GFM Works

To understand how GFM works, we will carefully review the representation in 

Figure 1.  Figure 1 shows two plots with Depth on the bottom half and FGV on the 

top half, with the x-axis representing time.  The bottom half depicts a dive profile (as 

defined previously).  Suppose the maximum depth is 100ft as in the figure, and at 

time t1 the diver surfaces.  The free gas computation corresponding to that dive 

profile will have some maximum peak value shown as Max1 at some time t1'. 

Suppose, the diver stayed at 100ft for another 5 minutes until time t2 (t1 + 5 minutes). 

For the longer dive there might be a larger peak value of FGV (depending on the 

circumstance), and the maximum value might be Max2 (> Max1) at time t2'.  Now if 

we consider that a diver is in fact at 100ft at time t1, and these two future dive 

profiles with corresponding peak FGVs are calculated as predictions while the diver 
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is at depth, we start to understand how GFM works.  In this way GFM can be used 

not only to calculate the real-time FGV in the diver's body, but also and more 

importantly, the FGV that would result given certain future dive profiles.  

The last piece of the puzzle is to find the time-to-decompression or no-

decompression time remaining, important outputs of any modern dive computer.  To 

do that using GFM, the points (t1', Max1), (t2', Max2), … (tn', MaxN) can be used to 

predict the time when the peak FGV will breach a certain critical value, shown as 

Vcrit in the figure.  If you had unlimited computational capacity you could run an 

unlimited number of FGV predictions and pinpoint the NO-D time without much 

effort, but in reality only a limited number of predictions can be run.  In fact, in the 

simplest case you could simply run one IA prediction and simply report when the 

time arrives at which an IA to the surface would breach the critical value.  The simple 

approach (not making use of GFM utilize its prediction capability) would provide an 

accurate real-time result, however without much warning to the diver.  How many 

Figure 1: GFM Free Gas Predictions (conceptual)
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predictions need to be run to give ample warning to the diver depends on the system 

design and trade-offs in how accurate the system needs to be, and how much time and 

power can be spent on computation.  In an application such as a top-of-the-line dive 

computer, it may be required to provide a warning well in advance for multiple future 

dive profile scenarios.  In other applications that are not as time-critical or safety-

critical, the last minute update may be sufficient.  In the past, some divers relied on 

their own hand calculations and tables of pre-calculated values for safe dive times and 

decompression schedules, but modern dive computers are so advanced that many 

divers now rely solely on the information they provide for their safety.  This thesis 

will consider the case of a safety-critical, real-time, high-end dive computer where the 

most accurate and fastest possible response time is most desirable.

We can note here that the GFM patent describes the GFM algorithm very well 

in terms of its formulation, background and concepts, input and output parameters, as 

well as a detailed listing of the main algorithm routine written in high level code. 

That document will be referenced here, and the remaining sections will assume some 

familiarity with the detailed information provided in that document.  Note also that 

for the purposes of this thesis, we are not as much interested in how the algorithm 

was developed, or in comparisons to other similar algorithms or validation of GFM 

itself, rather, we will assume its validity and focus instead on the use and performance 

of the algorithm.  In addition, the subject matter of this paper will focus more on how 

to achieve the highest or otherwise most suitable performance of the GFM algorithm 
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running inside a modern, low-power, battery operated dive computer.  

GFM Example – Real-Time FGV CalculationGFM Example – Real-Time FGV Calculation

To really drive home the meaning of the concepts in the previous section, let's 

first follow a more detailed example of the simplest case of GFM's in-application use. 

What we want to consider here is what GFM calculates, and when it calculates it, in 

order to keep track of the real-time FGV in the diver's body.  At the simplest level, 

this is the basic piece of information every GFM application needs in order to 

function.  Additional predictions can be performed, but only if the real-time state is 

and has been calculating from the start of the dive or (set of dives if more than one 

dive).  

Let's assume then that a diver (let's call him John) has just arrived at a location 

where he plans to make a dive and he is on the surface, at 0 FT of depth.  We will 

further assume that John's body has had enough time to equalize and otherwise adjust 

to the altitude he is at, and that this is the first dive of the day, and there are no 

previous dives even the day before.  This information is important for any dive 

computer because to be accurate, unless the computer has been keeping track of the 

state of  the gas in John's body from changing altitude, previous dives made, etc ... it 

has to assume that everything is as described above.  So John is about to make a dive 

and he turns on his GFM dive computer.  The GFM computer will initialize and start 

keeping track of time and depth.  
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As used in the routine given in the GFM patent, we will use 0.1 minutes as the 

time step for the GFM routine.  In other words, every 6 seconds, the GFM routine 

needs to run in order to keep track of the real-time state.  Note that this means the 

routine needs to complete its computation in no more than 6 seconds, before the time 

the next routine call starts.  We can visualize this using the plot shown in Figure 2. 

The figure shows a dive profile, starting at the surface (0 ft), and going to a depth of 

100ft.  Notice that each time the basic GFM routine runs (shown as a program 

function f(x)), there is a dot marking the execution time.  Each execution is separated 

by a time difference, labeled dt, where dt=6s.  Note that each time the routine runs, it 

runs in its entirety.  Each time the routine runs, it needs only the current depth or 

pressure input at that time, the current time, and any other constants defined during 

GFM initialization.  

Using real-time programming vernacular, this type of basic algorithm routine will be 

loosely termed the algorithm's “kernel” or real-time “tick”, in this case representing 

Figure 2: GFM Routine Execution  (conceptual)
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the most basic piece of the larger program.  The larger GFM program would include 

the real-time tick, as well as higher level algorithms that include running predictions 

and any other routines that are needed to calculate the dive computers outputs.  

Now, following Figure 2, consider that John completes the dive by ascending to 

the surface, possibly stopping at intermediate depths on the way up.  The GFM kernel 

continues to run every 6 seconds, and every 6 seconds the real-time state of the gas in 

John's body is up to date.  This computation is essentially all that is needed to keep 

the state of the John's body current.  As mentioned previously, a high-end dive 

computer based on GFM would require more computations.  At a minimum, a high-

end GFM-based computer would need to compute predictions of future dive profiles 

to give John real-time feedback on the consequences of future actions.  

GFM Example – Prediction CalculationsGFM Example – Prediction Calculations

Let's suppose our diver John is at 100 ft and has been there for about 15 

minutes.  John may consider staying at that depth for another 15 minutes.  The 

problem is that this amount time at that depth (assuming the breathing mixture is air), 

could force John to be required to take what are called decompression stops on the 

way up.  This may or may not be an issue for John.  For example, if John has 20 

minutes of air left in his tank, but the combination of his extra 15 minutes at depth, 

plus the time needed to complete the decompression stops means that he would not 

have enough air to complete the stops, then John will be in trouble if he in fact stays 
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at 100ft for another 15 minutes.  This is an example where predictive calculations 

done at the current time could provide John with vital information about the future.  

In fact, one of the most basic outputs of modern dive computers is the Time-To-

Decompression, or No-D Time, and is the time remaining at the current depth for 

which the diver can stay and simply ascend to the surface without taking any 

intermediate stops (decompression stops) to avoid DCS.   In other words, if John's 

computer says that the NO-D time is 5 minutes, that means that John has 5 minutes 

where he can remain at depth, then ascend to the surface, without making additional 

stops on the way up.  If John chooses to ignore the NO-D time given by the dive 

computer, he can certainly do that, but then he will need to perform decompression 

stops, or otherwise ascend at a specific rate such that he avoids DCS.  As mentioned 

previously, how many predictions or future options are run depends on the 

application and the dive computer manufacturer's choices made during the design of 

the specific product.  In the dive computer industry, it is generally expected almost by 

definition that a dive computer at least provides the NO-D time, as well as 

decompression schedules once that time is exceeded.  Beyond that, although a 

predictive algorithm such as GFM can allow for providing more information, most 

dive computers traditionally have not provided much additional information beyond 

simple calculations such as PPO2 levels, breathing rates, and other simple 

calculations.  
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Suppose, for example, that at every tick, additional prediction calculations are 

run that determine the NO-D time, plus the consequence of taking so-called Safety 

Stops [3][4] on the way up.  Safety Stops are short (< 5 minute) stops made typically 

at one shallow depth on the way up to the surface.  These are recommended by dive 

instruction and safety institutions such as PADI [5], and are generally followed by 

divers as a safe practice measure.  If a GFM computer ran safety stop predictions, it 

could not only give John the NO-D time, but also the consequence of taking Safety 

Stops at different depths, or of different lengths of time, for example.  Given that 

information, John could then decide, for example, that a 1 minute stop at 15 ft is 

sufficient, as opposed to a longer time that might be recommended.  General rules of 

Figure 3: Prediction Calculations (conceptual)
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thumb such as the “3 minutes at 15 ft” safety stop are meant to be a safety measure 

under a wide range of conditions, however, a true real-time prediction of specific 

safety stop times and their consequences might be more desirable and useful to the 

diver.  

Figure 3 depicts a dive to 100ft, followed by some time at depth, where the 

prediction calculations are illustrated at one point in time.  The dotted lines represent 

two different prediction calculations, run at time t1.  The first prediction labeled (1) 

follows the path from the bottom depth up to the surface, without any stops.  The 

second ascent labeled (2), follows a path up to 15 ft for a safety stop, then up to the 

surface.  Also labeled on the upper plot are the resulting free gas volumes 

corresponding to the predicted ascents (1) and (2).  FGV1 is the FGV value that 

would result in the diver's body if the diver followed path (1) and FGV2 is the FGV 

value that would result if the diver followed path (2).  Note that since GFM correlates 

the  amount of FGV to the probability of getting DCS (PDCS), and because we know 

that safety stops are recommended as a general safety measure, it makes sense that 

the plot shows the maximum value from path (2) smaller than the maximum from 

path (1).  In other words it should be clear why FGV2 < FGV1 after taking a safety 

stop.  Since the max FGV value is correlated to PDCS by GFM, it should be clear 

why this information would be useful to John as he decides what to do precisely at 

time t1 at depth.  If John knows that ascending would produce say 30 ml of free gas 

(or X percent PDCS), but that if he takes a safety stop on the way up the FGV would 
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be say 5 ml (or Y percent PDCS; Y < X), then John  has a concrete measure of how 

effective the safety stop would be.  In fact, you can now understand why the more 

predictions that can be run, the better informed John can be, and the better equipped 

he is to make the right decisions during his dive.  It should also be clear that if the 

calculation cannot be run efficiently and provide output in a timely manner, that they 

are useless to John as he tries to make a safety-critical decision.   

Dive Computer Systems (General)Dive Computer Systems (General)

Personal Dive Computers (PDCs) have already been defined in terms of 

purpose and function, and so this section will attempt to describe what a dive 

computer is as an electronic product.  A dive computer is typically a small embedded 

computing device with 1 to 4 user input buttons, some type of segmented or dot 

matrix user interface display, and in recent years a PC communication interface.  A 

general-purpose processor is typically used as a master and other processors/devices 

as slaves. The master handles I/O, timing and clocks, A/D conversion for sensor 

input, display control, flash memory for data storage, and virtually everything the 

dive computer needs.  Most if not all current devices handle existing algorithm 

computation from within the main general-purpose processor, due to the relative 

simplicity of existing algorithms.  

PDCs come in many size and shapes, and are made by a few different 

manufacturers in few different countries.  Some of the first and oldest devices were 
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relatively large in size, and used relatively large batteries for power.  Display screens 

were much larger than today, and processing power was much more limited.  As a 

result, the first dive computers had very limited capabilities, but still proved useful to 

divers who did not want to have to hand calculate dive times and schedules.  PDCs 

took off over the last 20 years and today we have companies that offer everything 

from the low end basic computer under $100 to high-end, wireless/air-integrated, top-

of-the-line units that sell for thousands of dollars.  Some units are still hand-held, but 

they also come in wrist-top units and low-profile watch-style designs as well.  Some 

designs use sophisticated color dot-matrix displays, with multi-featured PC interface 

and download software, offering everything from so-called pre-dive planning to dual-

algorithm selection and user customization.  For more information a good source of 

information is the latest article from Scuba Diving Magazine [6] that evaluates the 

latest and greatest dive computers for 2009 from some of the top manufacturers.  

A GFM Dive Computer SystemA GFM Dive Computer System

Scuba diving and dive computers in general have been discussed, and this 

section will focus now on what a GFM computer is and specifically what is meant by 

a GFM PDC in this study.  As mentioned previously, the PDC designer has freedom 

to design the device in many different ways, depending on the specific requirements 

of the product being designed, but in this study we consider only the most demanding 

type of design in terms of power, performance, and area footprint.  To begin, we start 
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with the understanding that a GFM dive computer is first and foremost, a dive 

computer.  That means at a high-level, a GFM-based dive computer calculates many 

of the same things that most all dive computers do.  This includes the NO-D time, 

decompression schedules, PPO2 levels, breathing rates and ascent/descent rates, 

oxygen toxicity, and more.   

In terms of hardware, we further assume the device has some sort of display, 

whether it be a simple segmented unit for digits and icons, a  dot matrix display for 

graphical output, or a combination of both.   We will assume some sort of 

communication and download interface to a PC, whether it be wired or wireless.  We 

also assume the unit includes several user input buttons for control of the device and 

general user input.  We assume the device includes some sort of on-board memory for 

storage of dive data, settings, constants, and other information needed by the 

algorithm or operating system.  In terms of external packaging, we consider a device 

that has a low-profile watch-style design that can only be powered by a very small 

non-rechargeable coin-cell battery.  The batteries used for power in these type of 

designs are typically 3V with a recommended (short duration) peak current draw of 

around 20mA, a recommended continuous current draw of less than 1 mA, and a less 

than 300 mAh capacity.   

A GFM PDC needs to be running a real-time operating system of some form. 

At a basic level, GFM requires that pressure and time are input on a pre-determined 
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schedule.  For this study we will consider that the basic time-step or “tick” interval is 

0.1 minutes (6 seconds), as given in the GFM patent description.  This means that no 

matter what else is calculated on other timescales, the real-time state of the algorithm 

needs calculate on a timescale of 6s or less.  We also know the importance of 

prediction calculations for the outputs of a GFM-based PDC.  Because of this, we will 

set the goal that the 6s interval is the timescale in which the real-time state, as well as 

all prediction calculations must complete.  This could be done using more 

complicated schemes whereby data is interpolated between longer timescales of 

computation, but to take full-advantage of GFM and to be as responsive as possible, 

we will say that within 6s, we want the real-time state plus all computation for all 

PDC outputs to be complete.  

Note that for a low-power battery-operated system we would want the resource-

intensive computation portion of operation to take up only a fraction of the time in an 

active/on state (for example at 5% duty), but still as a strict upper-limit real-time 

bound, we will use 6s.  Duty cycle in this case refers to what percent of the time-step 

timescale (6s) the device is actually active and running.  This is in contrast to when 

the calculations are completed, and the device resumes a low-power state.  It is 

important to note then, that in a low-power device such as a PDC, any opportunity for 

using a low-power system state is desired for maximum battery life.  So for example, 

although we have 6s to complete the real-time state calculation as well as predictions, 

if we can finish in 1s, or say 1/3 of a second, that would be even better.  The more 
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time the processor can stay off, the longer the battery will last.  This type of energy 

consumption calculation will be specified more clearly in later sections.  

C-Code Implementation of the GFM Algorithm C-Code Implementation of the GFM Algorithm 

The original GFM algorithm as written by its inventors, is a VB-Code based 

routine that simply runs the core GFM routine, and does nothing more.  This is 

necessary but not sufficient to run a GFM-based dive computer.  There are a couple 

reasons for this.  One reason is that although the VB-code was designed for and runs 

perfectly well on a PC with relatively large memory and high processor power, for a 

real embedded device running on a coin-cell it is not optimized in any way.  All 

variables are double-precision floating-point, and for a low-power application this 

presents a prohibitively large memory footprint.  

Secondly, the routine presented in the patent is not designed for a real-time 

embedded system, rather, it is simply a procedural routine that starts with inputting 

parameters for a specific dive, and ends with outputting values to a file on a PC.  In a 

real system, real pressure data from analog sensors is sampled at regular intervals, 

and time is broken up into slots for the operating system to be able to handle other 

tasks in addition to GFM.  A practical GFM algorithm could not simply run through 

all calculations at once to compute the needed PDC outputs, rather, routine calls 

would need to be carefully and precisely scheduled to make the best use of processing 

power, and to reduce battery current draw.  



20

Lastly, the routine in the patent represents only the simplest use of GFM, 

calculating through one pre-determined dive profile.  There are no predictive 

calculations being run in parallel, and no higher-level algorithms as would be needed 

in a full dive computer product design.  In short, the original version of the GFM 

routine needed to be re-written in a form suited for a real-time PDC design.  The code 

was re-written in C, and the new routine(s) were optimized to provide a more 

efficient and suitable starting point for design. It should also be noted that although 

the patent describes that GFM can be used in a multiple-tissue model, this study 

focuses only on a one-tissue model for simplicity.  

To describe the C-code implementation of GFM, we start by looking at the 

code at a high level.  There are certainly many different ways to implement real-time 

systems for embedded targets [7]-[9].  Depending on whether you have one processor 

or more, what type of processors are used, and depending on the specific resources 

for the application, the  code can be greatly optimized for the application.  In terms of 

C-code, at a high-level, specific details of the processor architecture are not so 

important since the compiler would typically take care of many needed optimizations 

and low-level detail.  For simplicity and for the purposes of writing high-level C-

code, we will consider a system that runs on one processor.  Furthermore it is noted 

that in place of having real pressure input from a sensor, routines are needed that 

simulate pressure changes as inputs to the applicable GFM routines.   
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A Simulation-Only Implementation Structure

In the next section the program structure for a typical real-time implementation 

for an embedded target such as a battery-operated dive PDC will be described.  In this 

section we are concerned with what the program looks like when we are concerned 

about accurate, representative and functional simulation, and not necessarily about the 

program being suitable for a real-time implementation.  This is important because 

much needed work can be done without having to implement the algorithm as a real-

time algorithm.  For example, obtaining expected outputs for given input vectors can 

be found by simulation and the results do not depend on whether the code was run in 

real-time or not.  This type of use is very important for application profiling, to be 

explained more in -depth in a later section, where extensive simulations are done on a 

wide range of input vectors to characterize the application program.  

A simulation only implementation structure looks very similar to the GFM 

routine given in the GFM patent.  This is not surprising since the purpose of the 

routine in the patent is similar to that described above, to be used for simulation-only 

purposes.  On the other hand, some changes were made in the C-code version to 

facilitate moving toward a real-time implementation.  In that sense, this version 

described here is very close to what a final-real-time implementation would look like, 

except that it does not run in real-time.  

The high-level pseudo-code in Figure 4 shows a simple program structure used 

to run simulations.  The main routine initializes variables, then runs various types of 
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dives as required.  What dives to run can come from a simple input vector file 

containing depths and times, or the dives can be hard-coded in special routines used 

only for testing.  Note that to run an ascent or descent, some ascent/descent rate is 

required, and it is noted that a standard 60 ft per minute (fpm) will be used, although 

this can be changed anytime by inputting a new rate into the various functions or by 

setting a global variable holding this parameter. More complicated dives with varying 

ascent/descent rates can also be constructed similarly.  

The copyRealTimeState function is essential to run prediction calculations for 

the following reason: If prediction calculations were done on the same set of variables 

as the real-time state calculations, the real-time state would change.  This function 

copies all the required variables to another set, in order to perform prediction 

calculations without affecting the real-time state.  Otherwise this simple set of 

functions is essentially all that is needed to simulate dives using GFM, including 

running predictions.  The program actually used is slightly more complex, however, 

the pseudo-code representation below is representative of the functionality of the real 

code.  For example, other higher level functions that use these low-level functions 

also exist, such as “findNODtime” and “predictSafetyStop”.  
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Note that instead of hard-coding specific dives to be run (as shown in the main 

function above), it could also just as easily be written such that dive parameters are 

read from a file and processed accordingly.  What is important here is the overall 

structure and concept of the program.  

A True Real-Time Implementation Structure

As will become clear later in this paper, this study will focus mostly on one 

portion of a GFM system – the base GFM routine and optimizations related to that 

void main() {
initialize(); // initialize variables and constants
openLogFilesForOutput(filename, ...);
runNODDive(depth, time);
runMultiLevelDive(depth1, time1, depth2, time2, ...);
runRepetDive(depth1, time1, depth2, time2, ...);

}

// setup constants, calculated values, variables
void initialize(arg1,arg2,...) {}

// step pressure and time to ascend to specified depth
void ascendTo(arg1,arg2,...) {}

// step pressure and time to descend to specified depth
void descendTo(arg1,arg2,...) {}

// wait for a specified amount of time at current depth
void waitFor(int time) {}

// run one GFM time-step (used by other routines)
void doTimeStep() {}

// used to run predictions, copy all state variables 
// for use in predictions
void copyRealTimeState() {}
Figure 4: Pseudo-code for a simulation-only implementation of GFM
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routine.  It is important, however, to understand what a practical application would 

look like at a higher level.  This section will describe how a true real-time GFM-

based dive computer product might be structured, in terms of the operating system 

and high-level code.  Note that there are certainly many different ways to organize 

and structure real-time programs, and the following description is only one method. 

Because the target application is an ultra-low power battery-operated system, this 

description assumes that there is only one processor available.  

The high-level pseudo-code in Figure 5 shows how a real-time GFM program 

running in a dive computer might be structured conceptually.  Since the system is 

ultra-low-power and real-time, the program first initializes, then begins an infinite 

loop that ends with the processor going to a low-power sleep state.  This is typical for 

a battery-operated low-power  system such as a dive computer.  The processor can 

wake up from interrupts such as timed interval interrupts, user input button (i/o) 

interrupts, or other interrupts setup in the particular system.  Some of the functions 

that need to be performed when the system wakes up are shown to occur at different 

time intervals.  

For example, for the system to be very responsive to user input, user input 

button interrupts might be checked at every 1/8 second and processed accordingly. 

Also occurring on regular intervals would be the task of keeping track of depth and 

time.  Updating depth involves sampling an analog pressure sensor via an analog-to-

digital converter, and updating time involves simply increasing the current value of 
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the variables used to keep track of time.  Being that a dive computer is a real-time 

system, it is assumed that there is a mechanism that allows for real-time to be tracked. 

As was mentioned previously, considering that the target application is a watch-style 

design, it is noted that a standard 32khz watch crystal is typically used in watch 

designs to keep track of real-time.  There are of course other tasks that must be 

serviced for a real-time dive computer design, but the pseudo-code below includes 

some of the major components required.  Note the GFM algorithm computation 

happening on the 6 second timescale described previously.  

void main() {
initialize(); // initialize variables and constants
while(1) {

// process events from ISRs
if(time interval == 1/8 second) {

// sample new depth, and keep track of time
// process user input buttons

}
if(time interval == 1/2 second) {

// update output display
}
if(time interval == 6 seconds) {

// process GFM algorithm: run GFM timestep and predictions
gfm_timestep();
runPredictions();

}
goToSleep(); // wait for interrupts

}
}

void timerInterrupt() {
// flag interrupt for later processing

}
void userButtonInterrupt() { 

// log button press for later processing
}
Figure 5: Pseudo-code for a real-time implementation of GFM
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It is very important to note that in the real-time pseudo-code in Figure 5, that 

the GFM time-step routine is meant to be a sub-routine.  This is important because the 

we know that the predictions that need to be run involve many time-steps, and these 

time-steps may possibly take hundreds of milliseconds to process.  The point is that if 

the required computation were simply in one continuous loop, as in the original VB-

coded GFM routine, it may not be able to be run within a strict real-time system with 

time allotments such as above.  In the description of the system above, tasks are 

scheduled into 1/8 second time-slots, such that any required computation occurring in 

one time-slot must complete within 1/8 second, or else the system is unstable.   With 

each time-step run as a sub-routine call, this system is easily accommodated.  The 

programmer only has to make sure that if each time-step runs in X ms of time, that no 

more than (125ms / Xms) time-steps are run in any given time-slot.  

For example, if prediction is needed to find the maximum free gas from an 

ascent to the surface from the current depth, the following represents the calculation 

needed to schedule the task and perform the prediction.  We start by considering that 

at some depth D, it would require M = (D ft / (ascent rate in ft/min)) minutes of real-

time to reach the surface.  For M minutes, you need N = M * (10 time-steps per 

minute) time-step calculations to calculate the ascent to the surface.  So if D=60 ft 

and the ascent rate is 30 ft/min, it takes M=60/30=2 minutes to reach the surface, and 

it requires N=2*10=20 time-steps to be calculated.  Since we want the maximum 

FGV on the surface after the ascent, we need a maximum of around 15 minutes of 
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calculation on the surface for the free gas to peak, so that makes for another 150 time-

steps.  In total, to find the peak free gas for an ascent from 60ft at a rate of 30ft/min 

including 15 minutes of surface time, it would require 170 calls to the GFM time-step 

routine.  Now suppose each time-step routine takes 1ms to process.  Even if the 

routine could be processed that quickly, it would still require more time that is 

available in each time-slot.  The 170 time-steps could however be broken up as a task, 

where say 50 time-steps are run inside each time-slot. At that rate it would require 

four 125ms timeslots.  As long as the prediction is completed before the next real-

time state calculation (every 6 seconds), the system will be stable at least in terms of 

time-step scheduling and given the time allotments as described here.   This type of 

calculation above will be used frequently, and so the relationship between the amount 

of real dive time simulated versus the number of time-steps needed is expressed in 

equation form in Figure 6.  
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A Set of Visual Aids for GFMA Set of Visual Aids for GFM

The concepts used with GFM are complex, and for the most part, the details of 

how the algorithm works and was derived is left for the reader to review in the 

algorithm patent document.  On the other hand, the concepts are so central to the 

customized hardware research and design in this study.  For that reason, this section 

will provide some visual-aids to help with some of th concepts.  The reader is 

encouraged to refer back to this section for clarity while reading later sections.  The 

format that follows is a set of images with explanatory captions.  

Let

Nts = # time-steps required for prediction 

DT = minutes of real dive time being simulated

TSPM = 10 time-steps / minute

CPTS = # cycles per time-step

Tts = Time-step processing time in seconds

Tpred = Prediction processing time in seconds

Then, 

Nts = DT * TSPM Equation 4

Tts =  CPTS / freqsystem_clock Equation 5

Tpred = Nts * Tts Equation 6

  = (DT * TSPM) * CPTS / freqsystem_clock Equation 7

Figure 6: Time-step and prediction relation with real time
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Figure 7: A dive profile for a simple dive: 100ft bottom depth, bottom time BT=t2-t1,  
ascent/descent rates (AR/DR) in fpm.  Note that bottom time for a simple dive includes the time 
starting from the descent from 0ft (surface).  

Figure 8: A dive profile for a simple dive with a safety stop.  The safety stop is 3 minutes at 15ft.
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Figure 9: Free gas generation from two different future ascent scenarios (1) and (2) calculated  
at time t1

Figure 10: GFM time-step computation every 6s during dive
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Standard Set of Dive ProfilesStandard Set of Dive Profiles

Like many real-time embedded applications, the GFM application takes some 

input(s) and produces some output(s).  In the case of GFM, inputs are physiological 

constants, calculated but fixed values, as well as time and real-time sensor inputs. 

Outputs from GFM are data and control values - primarily the current and future 

(predicted) free gas volumes.  To understand the algorithm and application, it is 

important to simulate outputs for given inputs.  As will be clear in a later section 

dealing specifically with the importance of application profiling, a very robust input 

vector set is needed to properly characterize the application as part of the design flow 

for creating customized hardware.  Besides the fixed inputs GFM requires, time and 

depth are the main inputs to GFM.  At a higher level, what constitutes a robust, 

sufficient, and standard, set of dive profiles for algorithm characterization is 

important to define.  

Figure 11: No decompression limit (NDL) calculation concept from points (t1,g1), ... ,(t3,g3).  
Note that the times t1, t2, t3 refer to the time of ascent associated with resulting free gas volumes 
g1,g2,g3, and the NDL is the ascent time when the resulting free gas volume exceeds Vcrit.  
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To define a set of dive profiles to be used for algorithm characterization is not a 

simple task.  As was mentioned previously, there are many types of divers, and 

correspondingly there are many types of dives.  There are, however, a few sources of 

information that can be used to help accomplish this.  The first is the historical and 

experimental test data, such as the U.S. Navy / NOAA Dive Tables [10], U.S. Air 

Force technical reports, and other data used by dive science researchers.  The data 

contained in NOAA / U.S. Navy dive tables, for example, have even been used as a 

basis for many modern algorithm designs.  Secondly, information found from dive 

instruction institutions and retail dive equipment shops also provides more 

information.  

For example, most dive equipment retailers that sell or rent high and low-end 

equipment will tell you that most of what they carry is related to recreational diving. 

Recreational diving refers to relatively shallow depths for relatively short times. 

What that means exactly is up for interpretation, but we can say that certainly 

recreational diving does not typically include so-called decompression diving, where 

divers stay under water after their NO-D time is exceeded.  That means most diving is 

NO-D diving to shallow depths.  Concerning air mixtures used, again, recreational 

diving typically refers to diving on compressed air, as opposed to other mixtures such 

as Nitrox (nitrogen and above 21% oxygen) or Heliox (includes helium).  For Nitrox, 

mixtures are typically between 22% and 50% Oxygen, although diving is also done 

above 50% and up to 100%.  Heliox is used only in smallest population of the diving 
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community and will not be considered in this study.  

A couple more dive types we need to mention here are repetitive diving, high-

altitude diving, saturation diving, and multi-day diving.  Repetitive diving refers to 

multiple dives being performed one after another, with some relatively short time in 

between.  For example someone might dive to 40 ft for 20 minutes, surface for some 

time, then repeat the dive later in the day.  This type of diving has its own 

consequences in terms of the body's reaction and in terms of safety limits.  Similarly, 

high-altitude diving has its own differences from sea-level diving, and consequences 

in terms of the body's reaction to it.  Multi-day diving refers to diving day after day 

for an extended period of time, and again, has its own consequences.  Saturation 

diving refers to diving for extended periods of time, such that the body becomes 

saturated with Nitrogen.  This is again a specialized type of diving performed by a 

relatively small population of divers.  All of these dives are done in many parts of the 

world for different purposes, but not by large population of divers.  

In a general sense, we need a robust set of input vectors that accurately 

represents all types of dives for which a GFM-computer would be used.  For the 

purposes of application profiling (to be elaborated on in a later section), it would be 

useful to be able to run simulations from a script that includes possibly hundreds of 

dives, that represents this robust set of inputs we seek.  The following lists detail dive 

profiles that are part of this standard set of dives used in various parts of this study. 

Note that all dives below also include the predictions run at each time-step during the 
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dive, as described in the next section on performance constraints.  

It is also noted that although we define the following sets of dives, in fact we do 

not need to run all sets each time profile information is needed.  The reason is that the 

algorithm code for GFM is so simple, and contains so few branches, that pretty much 

every line of code is executed every time the routine runs, regardless of what type of 

dive is run.  This is a unique feature of GFM, in that although it is a complex theory 

based on real physiological phenomena, its elegance is exhibited in its utterly 

simplistic formulation.  As detailed in the patent, complex mathematics take the form 

of simple discrete formulas, easily implemented in software, and in fact almost 

exactly the same no matter what dive profile is input.  

When a program runs different instructions corresponding to different inputs, it 

is said to exhibit program phase information [11][12].  Profiling techniques [35] 

become quite complex when programs run in different phases of operation, but for 

GFM this is not an issue.  Definitely there is a difference between dives that produce 

free gas and those that do not, but as we will see in Chapter 5 the difference is totally 

negligible, and in fact robust profiling can be done a limited set of dives.  In fact out 

of the dives presented below, only sets 1 through 4 are used for profiling, and results 

are inferred for all cases from those results.  

• Set 1: NO-D Dives on Air: Dives to one bottom depth for a specified period of 

time, followed by ascent to the surface, then a surface time of 20 minutes.  Depths 

starting from 40 ft to 180 ft, each for times of 1 minute up to the NO-D limit for 
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each depth.  To reduce the number of simulations but still keep a representative 

sample, we can step depth by 20 ft increments, and we will simulate out to half of 

NO-D time and to NO-D time.  

• Set 2: NO-D Dives on Air with Safety Stop: Same as above but including a 3 

minute stop at 15 ft before ascending to the surface.  

• Set 3: NO-D Dives on Nitrox: Same as the above NO-D dives on Air but using 

Nitrox mixes of 25% , and 30%, oxygen.  

• Set 4: NO-D Dives on Nitrox with Safety Stop: Same as above but including a 3 

minute stop at 15 ft before ascending to the surface.  

• Set 5: Repetitive Dives on Air: Dives to one first bottom depth out to NO-D 

time, followed by ascent to the surface, then a surface time of 2 hours, followed 

by another NO-D dive to the same depth.   Depths range from 40 ft to 190 ft.  

• Set 6: Multi-Level Dives on Air: Dives to one first bottom depth out to 5 

minutes of NO-D time remaining, followed by an ascent to half the first depth, out 

to the NO-D time, then ascent to the surface for 30 minutes.  First bottom depths 

range from 60 ft to 190 ft.  

• Set 7: Decompression Dives: Decompression dives following the US Navy 

Standard Dive Tables ranging from bottom times of 40 ft to 130 ft and including 

dives with hundreds of minutes of decompression time. 
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Design Constraints for a GFM Dive ComputerDesign Constraints for a GFM Dive Computer

To summarize the information on dive computers and the GFM algorithm, and 

to move forward in later sections, we need to detail exactly what the requirements are 

for the system.  Here we detail constraints on power, performance, and area footprint 

for hardware running GFM inside a dive computer.  The proposed implementation in 

Chapter 5 will be based on this and all information leading up that chapter.  

Performance Constraints

To begin with, we can specify performance constraints.  By this we mean that 

we will specify here exactly how much throughput is expected per some unit of time. 

As we saw previously, the computation needed in a GFM system is made up of two 

main parts.  There are (1) the real-time state calculations, and (2) the prediction 

calculations.  The real-time calculations involve calls to the base GFM time-step 

routine.  The prediction calculations can be broken down into routines needed to 

simulate depth changes, and calls to the GFM time-step routine.  For the real-time 

state, we know that the routine only needs to be called once every 6 seconds with an 

updated value for time and depth.  As we will see in Chapter 5, this is a relatively 

easy constraint to meet, but it must be met nevertheless.  Specifying performance for 

prediction calculations is more involved, and meeting them makes up the most 

challenging part of the design.  Note that in constraint 1, time refers to computation 

processing time, and depends of course on details of the hardware used, including 
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processor frequency, and cycle count per time-step.  For the purposes of setting 

constraints, we can simply relate the number of time-steps needed to compute within 

strict real-time bounds, and the details will be worked out later.  

(Processing) time per time-step <= 6 sec Constraint 1

As was mentioned earlier, how many and what type of predictions are needed 

for GFM is not set in stone, and in fact are up to the product designer in terms of how 

much useful future information is needed for the specific implementation.  That being 

said, it was already mentioned that this study will focus on the most demanding, high-

end type dive computer application, for which the power, area, and performance 

demands are greatest.  As will become clear in a later section, we are focusing only 

on no-decompression dives, and the results and design choices made will be shown to 

be equally applicable to other types of diving.  For the purposes of this study, we will 

assume that during a no-decompression dive, we want to be able to calculate the NO-

D time, as well as the result of taking a 3-minute safety stop at 15 ft.  

Remember from Chapter 1 that to be able to calculate the NO-D time, we need 

a set of points (t1', Max1), (t2', Max2), … (tn', MaxN) that can be used to predict the 

time when the peak FGV will breach the critical FGV, Vcrit.  This essentially 

amounts to gathering data points from ascent predictions run after each time-step, and 

interpolating or extrapolating for the future time when the FGV will breach Vcrit. 
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This assumes that an immediate ascent max FGV has hot yet breached Vcrit, and we 

are in fact still in a no-decompression dive.  

Predictions to be completed within 6 seconds

1. An immediate ascent prediction starting from the current time and depth

2. An immediate ascent prediction after 1 minutes at depth

3. An immediate ascent prediction after 5 minutes at depth

4. An immediate ascent prediction after 10 minutes at depth

5. An immediate ascent prediction after 35 minutes at depth

6. An immediate ascent prediction after 60 minutes at depth

7. The result of a safety stop of 3 minutes at 15 ft

Given the list above, we can calculate the amount of processing that would be 

needed, considering only the time-step computation and neglecting the subsequent 

calculation of NO-D time.  We will use Equation 4 to indicate how many time-steps 

need to be processed within the 6s boundary, in order to be able to calculate the NO-

D time. To find the number of time-steps, we first need the total number of real-time 

dive minutes simulated from predictions 1 through 7 above.  To be able to figure out 

how much time the ascents require, we need a depth.  Since depth can be any value, 

we have to assume the worst case where the diver is at 400 ft.   The value of 400 ft is 

chosen only because most dive computers do not even go beyond that limit, and so 

that depth would give the maximum ascent time for a diver.  As mentioned 

previously, we will use 60 fpm as the ascent rate, and 15 minutes of surface time to 
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wait for the free gas to peak.  We have the following simulated dive times, calculated 

as: <time at depth> + <ascent time> + <surface time>

• For prediction 1: 0 min + (400 ft / 60 fpm) + 15 min

• For prediction 2: 1 min + (400 ft / 60 fpm) + 15 min

• For prediction 3: 5 min + (400 ft / 60 fpm) + 15 min

• For prediction 4: 10 min + (400 ft / 60 fpm) + 15 min

• For prediction 5: 35 min + (400 ft / 60 fpm) + 15 min

• For prediction 6: 60 min + (400 ft / 60 fpm) + 15 min

• For prediction 7: 0 min + (400 ft / 60 fpm) + 3 min + 15 min

The total amount of real dive time (found by adding up the simulated dive 

times) considering predictions 1 through 7 is roughly 261 minutes.  Since we know 

there are 10 time-steps needed per 1 minute of simulated dive time, we know then 

that to calculate these 7 predictions will involve running 2610 time-steps.  Note that 

since we still need to run the 1 time-step for the real-time state, corresponding to 

constraint 1, we will combine the time-steps needed for a total of 2611 to be 

completed within the same 6s and label this new constraint Constraint 2a.  

time for 2611 time-steps <= 6 sec

time per time-step <= 2.297 ms Constraint 2a

We make one more note here that it is not sufficient to simply meet Constraint 

2a since, that would mean the process just meets the functional requirements, and 
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would need to be processing at full speed 100 percent of the time.  For a low-power 

system, these computations need to be run faster and spread out using a duty cycle 

percentage, where some portion of the time the processor is active, and the other 

portion it is in a low-power state.  For this reason, we will introduce Constraint 2b 

which implies a 50% duty cycle, meaning that we wish to meet Constraint 2a while 

only processing 50% of the time and in a low-power state the other 50% of the time, 

given some fixed time period (seconds, minutes, etc).  

time per time-step (50% duty) <= 1.149 ms Constraint 2b

Note that we are not concerned at this point how these constraints will be met. 

As we will see, the fact is that whether or not this can be met is a function of the 

efficiency of the implementation algorithm, program code, and hardware.  It is also a 

function of the chosen processor speed and any applicable real-time scheduling 

constraints (more later).  Of course the processor speed relates to power, which has its 

own constraints as well.  For now we simply state that in this real-time system, a 

GFM dive computer the base time-step routine must calculate within a strict bound of 

no more than 1.149ms.  This would allow for the real-time algorithm state, as well the 

predictions outlined above to all be calculated between each time-step run every 6 

seconds.   

As we will see later this is a very aggressive goal considering available low-

power hardware, and if met, would amount to a massive increase in performance. 

The trick is to make sure not only the performance goals, but also the power and area 
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constraints are met as well.  For now this performance goal above will be enough to 

continue with the design.  Later we will see why we need to consider not only no-

decompression dives, but also decompression dives.  Looking ahead a bit, in fact this 

is another reason why constraint 2b was set so aggressively, so that the hardware will 

be fast enough to handle decompression calculations.  

Power Constraints

Defining power constraints for a dive computer is rather involved.  We know 

from Chapter 1 that the device is to be a battery-powered, watch-style design that 

uses a small 3V coin-cell battery.   We will use a Sony CR2430 Lithium Maganese 

Dioxide type battery [13] as the example battery since this and similar types are used 

with various modern watch-style dive computer products.  These type batteries can 

typically supply 25mA maximum short-duration peak current, with a recommended 

continuous current of around 200uA.  They have a capacity of 300 mAh.  

Now, to define a power constraint, we need to first define a set of use-cases.  In 

other words, it is not sufficient to simply say that we wish to have a limit of X mA, or 

Y mAh, when that is not correlated with the use of the product.  For example, if we 

said that the limit was 300mAh, what would be the reasoning?  Would that tell us 

how long the user will be able to use the product?  Of course it would not, because 

how long the product will last depends on how much it is used, and how much power 

is drawn from the battery when it is used.  The point here is that we cannot use an 

arbitrary power limit, we need to use something that is practical, and at the same time, 
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relates to the usage of the product.  

We will define a power constraint such that it relates the amount of time the 

product can be used for under a normal and/or worst-case scenario.  Many times 

companies will use a typical-use-case information to define the amount of time their 

product can be used for.  For example, let's consider modern cellphones.  As of 

10/29/09, from the corporate website, Apple says that the Iphone 3G has a battery 

lifetime specified as “up to 5 hours” (talk time) on the new 3G network, or 277 hours 

standby time, where temperature, humidity, and altitude are also specified.  That 

sounds very simple, but upon closer inspection, you will find a separate link to 

articles [14][15] about how battery life is calculated, and how it can be optimized.  In 

addition to explaining how different applications and application settings affect 

battery life, one of the more interesting suggestions is that they say you should use 

your Iphone regularly to keep electrons moving inside the batteries.  

What this all boils down to is that whatever the power constraints were that 

they used in designing the Iphone, they were very specific to some particular usage, 

and in fact Apple has dedicated multiple web pages to explain what happens when 

you deviate from standard usage.  More appropriate to the discussion is the 2006 

press release from Texas Instruments [16] explains how Pelagic's scuba dive 

computers can last over 2 years in “ordinary dive use” using TI's low-power MCUs. 

They make note of the fact that Pelagic uses the low-power modes of the MSP430 

microprocessor when in watch mode on the watch-style Atom 2.0 dive computer 
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product.  What defines “ordinary dive use” is up for discussion, but we will arrive at a 

concrete definition for our purposes here.  

For our GFM dive computer, we will define the following use-case, in order to 

arrive at a reasonable power constraint.  Long dives require large tanks of some 

breathing mixture, and it is impractical for most divers to carry multiple tanks or re-

fill them on the surface mid-dive.  Because of that, we will say one, 30 minute, no-

decompression dive per day covers typical usage for the general case.  We will 

further stipulate that a typical dive is to one maximum depth, followed by an ascent to 

the surface at a rate of 60 fpm.  We will say that if a diver makes one of these dives 

per day, the dive computer should last at least one year without changing the battery.

The power constraint then, is two-part, given as constraints 3 and 4: 

The instantaneous (short-duration) power and continuous (long duration) power draw 
from the battery must be such that a Sony CR2430 (or equivalent) type battery can be used 
to power the device.  Constraint 3

The device must last a minimum of 1 year, supposing the unit is used in active (dive) mode 
for up to 30 minutes per day, following a typical dive profile as described in the preceding 
paragraph.  Constraint 4

Area Footprint Constraints

Defining an area footprint for the processor hardware used for GFM means that 

we wish to put a boundary on how large the hardware is.  We note again that the goal 

is to create the most efficient low-power hardware design that can fit inside a watch-

style dive computer product.  This is not something that can be easily quantified, but 

the for the purposes of this study we can again use the Pelagic Atom 2.0 product as a 
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reference.  The Atom 2.0 is a low-profile watch-style dive computer product that is 

fully featured and was at the time of its release, a top-of-the-line product.  If you take 

apart an Atom 2.0, you will see the the printed-circuit-board (PCB) is no larger than a 

2.25 square inches. Of course the board has many other components like EEPROM, 

and circuitry related to user input, and display output, so we need to consider that the 

processor size will be considerably less than the total board size.  We can consider 

that the x4xx series microprocessors in the TI MSP430 family processor hardware is 

less than 2 mm in height, and about 12mm square (without pins). We will use 

Constraint 5 below for our processor hardware based on the information above.  

Processor hardware < 12 sq. mm, < 2 mm (height)    Constraint 5
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Chapter 2: Low-Energy Hardware Design 

As will begin to become clear, the goal of this study is to investigate energy-

efficient design options for the particular application of a dive computer utilizing the 

GFM algorithm.  For this reason, we need to begin by understanding energy as it 

pertains to CMOS circuits.  Where does the energy used in a processor come from? 

Are there different types of energy?  Do different components use energy differently 

or at different times?  These are all valid questions and important to understand when 

discussing energy-efficient hardware.  Customizing hardware for energy efficiency 

involves understanding where options exist, and where customization can in fact be 

made.  The goal is to be able to use a fundamental knowledge of energy to inform 

design decisions from the beginning of the design process.  

Sources Of Energy in CMOS CircuitsSources Of Energy in CMOS Circuits

Whether it be a general-purpose processor (GPP), or an application-specific 

integrated circuit (ASIC), based on the application requirements we will now assume 

that some sort of processor needs to be involved in implementing the GFM algorithm 

most efficiently.  More implementation options will be discussed in chapter 3, but for 

now we will assume that whatever the chosen implementation in terms of system 

architecture, the hardware will involve modern complementary metal-oxide 

semiconductor (CMOS) circuit technology used in modern processor design.   In this 

case, we need to understand where the energy comes from in the circuits to 
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understand how to design for an efficient and high-performance system.  

Digital CMOS circuits are made of course of CMOS transistors [17].  CMOS 

circuits dissipate energy simply by being powered up, and by switching.  We can 

describe the power consumption in a CMOS circuit as given in Equation 8.

Ptotal = Pstatic + Pdynamic Equation 8

Static power refers to power that is drawn simply by the transistors being present in 

the circuit.  Modern designs try to minimize static power as much as possible, but it 

cannot be completely be removed unless the transistors are in fact not connected to 

the circuit.  Static power can be broken down further into standby power and leakage 

power.  Standby power is the product of standby current and supply voltage Vdd, and 

can usually be neglected in modern designs.  It does, however, play a role in memory 

circuits and in some circuit technologies.  Leakage power is the product of leakage 

current and Vdd, and is a function of how modern MOS transistors are designed.  As 

long as power is applied to the circuit, leakage current is a factor in total power 

consumption.  Note that leakage power is increasingly becoming an issue as transistor 

sizes decrease, and there has been a large amount of research recently dedicated to 

finding solutions to this issue as we move into the future [18][19].  Equation 9 shows 

the static power broken down as described above.  

Ptotal = [Pstandby + Pleakage] + Pdynamic Equation 9

The main source of power consumption, especially in a processor-based design, 

is the dynamic power.  Dynamic power refers generally to the switching of the CMOS 
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transistors as the logic circuit operate.  Each time the transistors switch there are two 

types of power that are dissipated, short-circuit power and capacitive power.  Short-

circuit power and current refers to how when a CMOS transistor switches, one 

transistor transitions from an on to an off state, and the other transistor from an off to 

an on state.  This results in a a small period of time where both transistors are on, and 

the current is shorted from Vdd to Vss (where Vss is the ground or virtual ground 

terminal of the transistor).  It is noted in [17] that because short-circuit current is a 

result of switching, it can be considered as an additional capacitance and so dynamic 

power can be simplified as in equation 11, showing proportionality to switching 

probability α, total capacitance Ctot, Vdd
2, and the clock frequency fclk.  

Ptotal = [Pstandby + Pleakage] + [Pshort_circuit + Pcapacitive]  Equation 10

Pdynamic =  α*Ctot*Vdd
2
*fclk      Equation 11

Capacitive power comes from average switching probability, the clock frequency, and 

the switched capacitance in the circuit.  It is proportional to α*C*Vdd
2*fclk.  It is this 

capacitive power that we are most concerned with in processor design, for obvious 

reasons.  First, it makes the most significant contribution to the overall power profile 

of the circuit.  Modern processes minimize static power as much as possible, but 

dynamic power is still present when transistors switch.  From Equation 11 we can see 

that reducing any of the factors would reduce the dynamic power, and there exist 

many different techniques to accomplish this, to be explained in the next section.    
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Techniques to Reduce Dynamic Energy ConsumptionTechniques to Reduce Dynamic Energy Consumption

Dynamic energy in CMOS circuits was shown to be proportional to 

α*C*Vdd
2*fclk.  This means to reduce dynamic energy, we can lower the amount of 

switching, the capacitance of the circuit, the power supply voltage, or the clock 

frequency.  This seems simple enough, but each choice has its own consequences. 

Lowering the supply voltage, for example, has a dramatic effect, since dynamic 

power is proportional to the square of Vdd.  However, one trade-off is that this can 

increase the propagation delay of combinational logic circuits.  The voltage cannot be 

scaled indefinitely either, and there are limits.  As supply voltages reduce, leakage 

power becomes  more of an issue, and so again there are trade-offs.  Designs can 

employ complex structures where critical regions are designed such that have short 

propagation paths, and where uncritical regions are otherwise not optimized.  These 

designs can strike a balance where power is reduced, and issues related to low supply 

voltages are minimized.  In [25], the theoretical and practical limits of voltage scaling 

are discussed, and in [26], a solution to one particular related issue of degraded 

performance due to voltage scaling is discussed.  

Lowering the system clock frequency is another simple way to reduce power 

consumption, but has the obvious effect of reducing performance at the same time. 

Performance for a processor is defined in different ways by different manufacturers. 

Performance metrics are described differently in terms of what type of processor is 
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being measured.  For example, some manufactures of reduced instruction set (RISC) 

and complex instruction-set (CISC) processors use the metric of millions of  

instructions per second, known as MIPS.    How many MIPS a processor is capable 

of is some measure of the architectural efficiency as well as performance, since, one 

processor using all the same parameters (technology, supply voltage, etc) as another, 

can have a dramatically higher MIPS than the other.  While lowering the clock 

frequency lowers the power and correspondingly the performance, some performance 

can be increased by increasing Instruction-Level-Parallelism (ILP).  Architecting 

more ILP in a processor is one way it can process more instructions per second given 

a fixed frequency, and there are many techniques that exist [17][20][21] for doing this 

such as Pipelining and using more complex architectures.  More on architecture 

choices will be discussed in the next chapter.   

Lowering the capacitance in a processor can also decrease the power 

consumption.  Capacitance comes in the form of capacitance found at each node, or 

each transistor, and capacitance that exists with the interconnect structure used 

between different components in the design.  Reducing capacitance means reducing 

delays and thereby increasing performance.  Architectural choices, as well as 

technological choices affect the inherent capacitance in a design.  

If we look at different levels of abstraction in the design of custom hardware, 

we can see which types of techniques affect power consumption and in what 

proportion.  This is depicted in Figure 12.  The figure shows how at the highest level, 
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while algorithm design choices offer the most amount of power savings and take the 

least amount of time, they can also be the least accurate in determining how much 

power would be saved.  Following a trend of lesser power savings, but increasing 

design time and accuracy, system level, architectural level, and gate and circuit level 

choices follow.  At the other extreme, physical level design (design at the transistor 

and silicon level), you get the least amount of power saving, with the most amount of 

design time needed, but with the best accuracy. This is obvious since if you design 

each transistor you know exactly where each component of power is coming from, 

and you have the most fine-grained control over power consumption.  At the 

algorithm level, you need virtually no knowledge of the underlying technology to 

make decisions, but you can make quick changes that result in huge power savings by 

optimizing the algorithm and reducing unneeded operations.  

Abstraction Level Power Savings Design Time  Accuracy

Algorithm        Most       Least    Worst

System

Architecture 

Gate

Circuit

Physical        Least       Most     Best

Figure 12: Abstraction Level vs. Power Savings



51

This study focuses mostly on the upper four levels of abstraction from Figure 

12, the algorithm level, system level, the architectural level, and the gate level.  As 

will become clear in Chapter 4, an ASIP implementation will be recommended for a 

GFM-based dive computer.  The work done in this study follows the same order from 

the highest level of abstraction performing algorithmic optimizations, down to the 

gate level where choices are made for a design written in a Hardware Description 

Language (HDL).  

At the algorithmic level, included in this study is a re-write and re-design of the 

original algorithm.  Operations are reduced, and more efficiency is achieved by 

reducing memory access and high-level operations in a way that makes for possibly 

the largest memory consumption reduction.  Reducing operations, re-ordering and re-

scheduling operations, reducing memory access, and reducing memory size are 

different techniques used to optimize at the algorithm level.  As was explained 

previously, it is difficult to determine how much power is reduced at the algorithm 

level since it depends so much on the underlying levels of abstractions, but in a 

general sense we can say that if we reduce operations by 50%, roughly 50% of the 

power is also reduced, assuming dynamic power in processing operations is the most 

significant contributor.  Besides analyzing the high-level algorithm code and reducing 

obvious inefficiencies, the most significant technique used in this study is in the 

conversion from a floating-point algorithm to a fixed-point one.  For real-time 

embedded systems, this is widely considered [20]-[23] to be an efficient way to 



52

reduce operations across the board in a computation intensive floating-point 

algorithm.  How this conversion was done is detailed in Chapter 3.  

At the system level, the entire dive computer system is analyzed and optimized. 

This is detailed in Chapter 5 in the sections on application profiling and on 

hardware/software partitioning.  This involves first profiling the application in detail, 

to determine which are critical in terms of power and performance, and which are not. 

It is then determined which portions of the algorithm are to be implemented in 

hardware, which in software, and further which portions of hardware need to be 

customized or not.  Trade-offs between flexibility, performance, area footprint, and 

efficiency are part of the ASIP design flow, and are central to reducing power at 

multiple levels of abstraction, including the system, architecture, and gate levels.  

At the architecture level is where the ISA is designed/selected and the processor 

core design/selection occurs.  The processor memory system, datapath and control 

circuits are all designed in order to best fit the application domain, and provide 

maximum efficiency given the application constraints.  Included also is the 

design/selection of low-level processor firmware, and required toolset as part of the 

hardware/software co-design.  

At the gate level is where the actual design in HDL comes into play.  Choices 

made in terms of clock domains used, clock gating design and other techniques are 

used to trade-off performance and area and power.  Much of this work can be aided 

by the sophisticated synthesis tools used in processor design, but even a the HDL 
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level there is some level of control the designer has to inform the tools what the 

design goal is.  For example, the Xilinx FPGA design tools used in this study contain 

complex customization controls to allow the designer to specify how gate-level 

circuits are to be constructed.  One such control allows the designer to specify 

whether to extract intended multiplexers (MUX) from the design.  This allows for the 

designer to choose whether to use the specific structures coded in HDL, or to possibly 

optimize those structures by using MUXs in place of possibly more complicated 

logic.  There are many such controls, and the user can set up a design goal strategy 

such as power reduction, area reduction, or high performance priority, or use a totally 

custom strategy where each option is specified explicitly.  
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Chapter 3: Implementation Options and Trade-Offs

In Chapter 1, the GFM application and its related application were discussed in 

depth with examples.  Input vectors for simulation-only and real-time high-level C-

code implementations of GFM were described and detailed.  Lastly, the constraints on 

performance, power, and area were defined for an efficient and practical processor 

handling GFM calculations.  In Chapter 2, the source of energy in CMOS circuits as 

well as low-power design issues and techniques were discussed.  At this point we 

have a good idea of what the GFM algorithm and related application requires, and we 

wish to detail what options are available for an efficient implementation. 

In terms of processors, we have a spectrum of hardware types, each with 

different characteristics and target applications.  If we imagine this spectrum as a one-

dimensional line, we can say that on one end we have totally custom hardware and 

Application-Specific Integrated Circuits (ASICs), and on the other end we have 

General Purpose Processors (GPPs).  In between we have a multitude of different 

devices, including Application-Specific Instruction Processors (ASIPs), Digital 

Signal Processors (DSPs), and hybrid architectures such as GPPs with accelerators 

and most recently, GPPs with embedded programmable logic.  The hardware options 

listed above each have their own trade-offs in terms of performance, area and power, 

as well as their related design flows.  We will discuss these options in this chapter, 

including why each may or may not be a good fit for a GFM-based dive computer.  
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The illustration in Figure 8 taken from [17] shows this spectrum of hardware 

options where the relative flexibility, computational performance, and energy 

efficiency is compared among the different types.  Note how from left to right the 

flexibility increases, and from right to left both the performance and the efficiency 

decreases.  This is a generally applicable illustration, and there are always exceptions. 

It is important to note that in recent years many new devices are being made that 

cross the boundaries between the different types, and can be considered hybrids made 

of one or more of the different types.  Recent examples include general-purpose 

processors that include pre-defined hardware accelerators.  One thing not illustrated 

in the figure is the time and cost of development, and we can say generally that costs 

increase from right to left, as does development time.  

         Dedicated HW      ASIP         DSSP                DSP   GPP

Low            High

High            Low

High            Low

Figure 13: Processor HW Implementation Options

Energy Efficiency

Computational Performance

Flexibility
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Custom Hardware Implementations and ASICsCustom Hardware Implementations and ASICs

We begin here with totally custom hardware and ASIC solutions.  With totally 

customized hardware, you can typically achieve the highest performance.  By this we 

mean that a circuit is constructed to do exactly one thing, as efficiently as possible, 

and there is literally no overhead in doing other operations or managing other 

components within a larger circuit.  As a simplest case example, suppose we need 

hardware that inverts one input bit, and adds it to another input bit.  The hardware 

needs two, one-bit inputs A and B, and produces one bit of output X which can be 

described by the logic function X = A + B.  

If we first consider the most gratuitous use of hardware as an extreme example 

of what not to do, we consider that we implement this inverter function using a 

general-purpose processor.  Being a processor, suppose its hardware has the 

capability of processing a variety of instructions, accessing a variety of different 

memory elements and structures, as well as accessing input output (i/o) ports and 

other internal substructures and components.  If we wish to implement our function 

X in the GPP, we will first need to program it.  The program would involve reading 

the two input bits (either from memory or from i/o ports), negating A, then adding it 

to B.  If we suppose a RISC-type instruction set, we can suppose that reading the two 

inputs, negating A, adding A to B, and finally outputting the result to some memory 

bit or i/o port, would require roughly 5 or 6 operations.  If we consider the time and 

energy required in the GPP to fetch the instructions and process them, it should be 
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clear why that solution to the very simple problem involves way more hardware than 

is needed.  The hardware will be relatively slow for the operation performed, require 

way too much power (mostly in overhead), and will take up way too much space than 

is appropriate.  

The simplest solution might be to use a combination of simple logic gates to 

perform the function desired.  For example, if we connect the A input to an inverter, 

and the B input to an exclusive-OR (XOR) gate, we can connect the output of the 

inverter to the other XOR input, and the output of the XOR gate will be the function 

X.  This solution involves only a few transistors contributing to power, will complete 

in drastically less time than would the first solution, and will take up magnitudes less 

space.  

The idea here is that at least in the case of a very simple operation needed, 

custom hardware can dramatically increase performance, and reduce area and power. 

Since we are interested in running a complex algorithm with real-time bounds, this 

example is a bit lacking, but we can extrapolate the idea to a more appropriate 

discussion.  For the GFM algorithm, we know that thousands of operations need to 

complete in the shortest time, at the lowest power, and using the least amount of 

space as possible.  Although we will get more into profiling results of GFM in 

Chapter 5, we can note here that on a the SimpleScalar RISC-based simulator [27] 

one GFM  time-step (in a single-precision floating-point implementation) requires 

over 5000 different operations.  Since we want to perform 2611 time-steps every 6 
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seconds, that means we need to complete over 13 million operations every 6 seconds. 

Now, performing these operations in a digital circuit is not the issue, rather, the 

issue is performing them efficiently.  If we consider making one totally custom 

hardware implementation not involving some sort of processor, you can imagine that 

this circuit would be extremely large in area.  That fact alone would probably 

disqualify it as an option, but even if not, it suffers from other problems.  The circuit 

would be very complicated to design, and would most likely be very inefficient.  If 

we are considering only combinational logic circuits without any sort of instructions 

or even clocking, we can certainly say that a custom hardware circuit implementing 

over 13 million operations would probably be the worst design option.  

In between might be something having the processing capabilities like a GPP, 

but with more efficiency like a custom combinatorial hardware circuit.  This first 

option we want to discuss is the ASIC.  ASIC designs take into account that many 

times the algorithm or operation that needs to be performed is complex in nature, but 

requires a degree of efficiency.  For example, many papers exist that discuss custom 

hardware solutions for encryption algorithms [28], and in virtually all cellphones you 

will find ASICs made for display processing, audio or video decoding, and radio-

frequency (RF) signal processing.  

An ASIC is generally an IC that may be configurable but not programmable in 

the same sense as a GPP.  The hardware is fixed for one application, and so in that 

way it has no flexibility.  It is typically optimized for performance and power for the 
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one target application only.  Its performance is typically the highest of any other 

implementation, and it is generally the most energy efficient as well.  For GFM, due 

to its complex nature, large number of operations required to be performed during its 

most basic operation (the time-step), and the fact that many of the operation types are 

repeated over and over within the time-step, we can say that an ASIC implementation 

is not ideal or even desired, and that some sort of processor would be more ideal for 

GFM.  

Application Specific Instruction Processors (ASIPs)Application Specific Instruction Processors (ASIPs)

As ASIP is closest to the ASIC end of the spectrum, but with an ASIP we 

introduce processing instructions.  As the name suggests, an ASIP is an instruction 

processor designed specifically for one application.  The idea is that an Instruction Set 

Architecture (ISA) and Processor Architecture (PA) are both optimized and custom 

designed for the target application.  In this way, the hardware can be extremely 

efficient and higher performance as compared to a general purpose processor, while 

offering a bit more flexibility than an ASIC.  Application profiling is very important 

in designing an ASIP, since the goal is to perform the operations of a specific 

algorithm efficiently.  

To understand more fully how an ASIP can provide more efficiency than the 

GPP end of the spectrum, consider an application that requires programmability and a 

processor core as the base hardware.  If we start with a RISC-type processor like 
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MIPS [29], there might be 20 or more instructions available.   Consider that a certain 

application really only makes use 5 of those instructions.  In that case, the overhead 

of being able to fetch, decode, and process all the unused instructions is waste, and 

could be eliminated.  

By profiling the application we can determine which instructions are used, and 

used most frequently.  Suppose further that through profiling we find that there is a 

set of two operations that always execute in pairs, and very frequently.  For example, 

suppose adding two 8-bit integers is always followed by multiplying two different 

numbers.  These two operations could be combined into one instruction, and a 

Custom Functional Unit (CFU) could be designed to perform the operation in parallel 

instead of in series.  Custom instructions and CFUs are common characteristics of an 

ASIP design, although there are many more techniques that exist [30][31].  TMS-

320C2x processors made by Texas Instruments include special addressing modes 

designed for FFT applications.  This is an example where a DSP (explained in the 

next section) was designed to include application specific features.  In this way the 

DSP chip is more like an ASIP since the custom addressing mode is not generally 

useful, it is useful only for a specific application.  There are countless studies on all 

parts of the design space for ASIPs, including those on instruction set selection for 

ASIPs [32]-[34], ASIP designs for low power , ASIPs for specific applications, and 

automatic ASIP generation techniques.  

It should be noted that a considerable amount of work has been done over the 
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last decade concerning all parts of the design space for application specific instruction 

processors. As described in [17], an application-specific instruction processor yields a 

balance between the optimal design of a wholly hardware specific implementation 

and a general-purpose processor. Typically the design processes involves multiple 

phases. The first involves obtaining detailed profile information [17][20][21][35] on 

the optimized algorithm. The application profile information is used to inform design 

decisions, and identify where enhancements can be made for the application. Given 

that profile, an existing architecture can be customized to more efficiently meet the 

specific workload of the application domain. Instruction-set extensions (ISEs) and 

CFUs can further increase the performance, and work on hardware-software co-

design [17][20][21] addresses the issue of producing new software tools for new 

instruction sets and otherwise modified instruction set architectures. Application-

specific functional units (AFUs) can be added to implement ISEs. 

Work has also been done on application-specific registers and register 

structures, and application-specific floating-point units (FPUs) for custom 

architectures. In addition the pipeline, datapath and control components are also a 

necessary part of ASIP design.  If an existing core is being used, much of this work is 

already done, although typically modifications are made. The storage and memory 

networks can also be customized for a specific application, and again profile 

information is used to direct design decisions. Work has been done on automatically 

generating the various topologies and configurations mentioned above. In particular, 
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automatic instruction set extension (ISE) identification and generation programs have 

been researched and have been identified as being a crucial part in the early stage of 

the pre-architecture design phase. Tools even exist that can go directly from 

application source code to automatically generate an ASIP HDL implementation, 

although these methods rely somewhat on pre-defined component libraries, and other 

fixed parameters.  Finally, low-power VLSI and HDL design techniques [17][36] are 

used typically in order to reduce the system frequency, capacitance and voltage 

requirements. It is also noted that typically the ASIP design process is iterative, in 

that design changes often require another pass at earlier stages in the design before 

finding the optimal configuration. 

It should be noted that the term ASIP does not indicate any specific processor 

architecture.   In fact, an ASIP can be designed to use existing ISAs such as RISC, 

CISC, or VLIW, or it can be designed with a totally new architecture.  ASIP simply 

refers to the fact that 

Domain Specific and Digital Signal Processors (DSSPs, DSPs)Domain Specific and Digital Signal Processors (DSSPs, DSPs)

Domain Specific Signal Processors and Digital Signal Processors are another 

class of processor hardware more toward the GPP end of the spectrum.  These 

processors are not made specifically for one application, rather, they are optimized for 

a certain domain of applications.  These processors are typically programmable, and 

contain specialized instructions specifically useful for the application domain. 
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Examples include the C5000 family from Texas Instruments and the Sharc family 

from Analog Devices.   

General Purpose Processors (GPPs)General Purpose Processors (GPPs)

General purpose processors are the most widely used, and most generally 

applicable processors available.  GPPs are designed for a variety of applications, and 

not optimized for any one specific application, or even application domain.  They 

offer the highest flexibility, since they can be programmed to do almost any task, 

given that the specific device has enough memory and processing capability for the 

specific task.  GPPs also exhibit the quickest development time and lowest cost. 

There is generally no hardware customization needed, and because they sell in high 

volumes, they are relatively inexpensive.  From a practical point of view, they also 

benefit from having very well documented uses.  There are literally millions of on-

line resources providing example code, application notes, example system designs, 

and other useful information.  

Examples of GPP devices include the TI MSP430, Atmel's AVR, Microchip's 

PIC, NXP's ARM-based microprocessors, Freescale's HC11, and the famous Intel 

4004, 8080, and 8086 processors.  Still more exist from Fujitsu, Samsung, Epson, 

STMicroelectronics, Renesas, NEC, and others.  Processors from these companies are 

in everything from refrigerators to space shuttles,  and number in the trillions sold 

worldwide.  They generally come in 8-bit, 16-bit, 32-bit, and 64-bit configurations, 
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and come with a variety of peripheral modules.  Peripherals typically include 

communication interfaces like UART, SPI, and I2C, timing modules, analog-to-digital 

(A/D) and digital-to-analog (D/A) interfaces, general-purpose i/o ports, and more.  

Using a GPP for a GFM-based dive computer is not a bad idea, provided that 

there exist microprocessors that can satisfy all the constraints of the system.  A study 

conducted by this paper's author suggests that there are not many, if any, 

microprocessors that can process the large amount of information GFM requires, 

within the real-time bounds required, and at a sufficiently low-power as to satisfy the 

power and area constraints for a dive computer.  Even if one exists that can just 

satisfy the requirements, still more benefit can be achieved by using a more 

customized hardware that offers higher performance and more energy efficiency.  

The time-saving aspect of developing with GPPs cannot be emphasized enough, 

and how the advent of high-level computer languages has played a big role.  High-

level languages like the C Programming Language allow programmers to develop 

algorithms and code modules that, if designed to be portable, can be used on a variety 

of microprocessor with little re-design or effort porting the code.  Since high-level 

languages can abstract the details of hardware, the code can be used on virtually any 

GPP as long as the low-level hardware-specific routines are ported.  An  I2C routine is 

a good example of this.   I2C is a communication interface that uses two lines, one for 

data, and for a clock.  The interface uses addressing to select different IC's on the bus, 

and communication is bi-directional.  A high-level I2C routine could be written 
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entirely without any details on the specific hardware being used, and the user would 

need only to specify which i/o ports are used for the two lines, and to configure the 

low-level routines to access those ports.   I2C is only one example and in fact there are 

thousands of portable routines available on-line.  

Combining the ease-of-use of portable high-level routines, and the general-

purpose nature of GPPs, designs can be completed in relatively little time or cost, 

although while sacrificing efficiency.  For many applications efficiency is not an 

issue, and a GPP is a great fit.  For example, if you were to design a vending machine 

program that processed button inputs from the user, and then sent a signal to output 

the product purchased, energy efficiency or real-time performance may not be a high 

priority.  If the user gets their product a few seconds later than they expected, for 

example, it will most likely not be an issue.  We can also say that whether a vending 

machine processor uses 1mA or 2mA while processing user input may not be a high 

priority.  In recent years, energy efficiency for all electronics has become a general 

priority, but we can say the importance is much higher in a battery-operated safety-

critical medical device, for example.  

Processor ArchitecturesProcessor Architectures

A lot has been said in this chapter about different architectures at a high-level, 

but there is one thing that has been only mentioned in passing. This is the idea that we 

need to use some sort of processor architecture for the GFM algorithm.  If we are 
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going to use a processor to implement GFM in the low-power dive computer 

application, we need to understand a bit about processor architectures.  Whether we 

use an ASIP, DSP, or GPP, we need to have an understanding about different types of 

processor topologies, and why they are used.  In this section we describe some of the 

most commonly used processor architectures and concepts.  

Processor Architectures - RISC and Pipelining

We can begin with what is called a Reduced Instruction Set Computer (RISC). 

A RISC architecture is one that, as the name suggests, is based on a simple instruction 

set.  The concept goes all the way back to the 1970's and is still used today.  The idea 

is to use a very simple instruction set including simple arithmetic and logical 

operations that operated on registers, and to use special load and store instructions to 

operate on memory.  Since memory accesses are slow compared to register accesses, 

this allows most operations to be performed on registers rather than memory.  Using 

very simple, 1-cycle instructions allows the processor to run at higher frequencies, 

and make it easier to design pipelines, explained in the next paragraph.  Examples of 

RISC assembly instructions include: load, store, add, subtract, multiple, divide, rotate 

bits left, rotate bits right, and many more.  

A pipelined processor is one that runs instructions in parallel (as much as 

possible) rather than in series, making use of hardware components that would 

otherwise be unused.  Pipelining is a technique to achieve high Instruction Level 

Parallelism (ILP), which can increase performance of an application by a factor 
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greater than or equal to the number of stages in the pipeline [29].  An analogy that is 

very intuitive to understand is that of washing clothes.  If you break up the task is 

stages, you can say that first you need to wash, then dry, then fold the clothes.  While 

you are drying, you can put another load in the washer, and while you are folding, 

you can put the wet clothes in the dryer.  If each operation takes 10 minutes to 

complete, and you perform them in series, it would take 3000 minutes for 100 loads, 

for example.  On the other if you pipeline the tasks, as described above, then you will 

complete 100 loads in roughly 1000 minutes, since the pipeline effectively allows you 

to wash, dry, and fold each load in an average of 10 minutes.  The serial washing time 

of 3000 minutes is roughly divided by 3 (the number of stages in the pipeline), for a 

pipelined total of about 1000 minutes.  

Unfortunately in practice, although pipelining makes operations much more 

efficient, there a whole host of issues that need to be handled in real designs.  In real 

designs, there can be dependencies on one stage to the next, and so some operations 

cannot be done in parallel, unless some sort of modification is made.  These issues are 

called hazards [29], and related hardware is called hazard detection and elimination 

hardware.  There are various types of hazards including data hazards, control  

hazards, and structural hazards, and each has own consequences and solutions.  

A good pipeline design takes into account all the hazards that need to be accounted 

for.  The pipelined MIPS type processors are a good example of pipeline design, and 

are featured in various computer architecture textbooks.  A modern example of a 
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popular pipelined RISC type processor is the ARM7 ARM9, and ARM11 family of 

processors, used in everything from the latest hand-held gaming systems to the latest 

touch-screen smart-phones.  RISC designs emphasize simplicity in instruction set and 

hardware,  many registers, few addressing modes, and high performance.  

Processor Architectures - CISC

CISC architectures refer to a Complex Instruction Set Computer (CISC), where 

the instructions handle multiple operations, as opposed to one simple operation. 

Because each instruction performs more operations, they generally contain more 

information, and are more complex to implement than simpler RISC instructions.  As 

example might be for one instruction to perform an addition, as well as a logical bit 

shift operation.  At the time before advanced compiler design, it was thought that 

hardware was easier to design than compilers, so CISC instructions were meant to 

perform as many operations as possible in fewer instructions.  It was also expensive 

to have large program code space in processors, however today it is not as much of a 

problem.  Later, CISC was adapted with the goal of making it easier to adapt high 

level languages like C, and to make hardware analogs to the high level constructs like 

procedure calls, and loop control. The Motorola 68K series microprocessors are an 

example of CISC architecture.  CISC architectures emphasize small code space and 

speed, extensive addressing modes, few registers, simple compiler design, with more 

emphasis on hardware.  
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Processor Architectures – VLIW

VLIW refers to computers designed with Very Long Instruction Word (VLIW) 

architectures.  This refers to the idea of creating very long instructions with multiple 

operations per instruction, to achieve higher ILP.  This relies on the underling 

architecture having multiple functional units available for use, and on efficient 

multiple-issue static scheduling of instructions at compile time. Compilers for VLIW 

architectures are generally very complex, while the hardware is relatively simple.  

For example, suppose a processor core has 4 arithmetic and logic units (ALUs), 

and 1 memory.  A VLIW instruction might include 1 add, 1 subtract, 1 bit shift, 1 bit 

negation and one load operation, all in one instruction.  By scheduling operations 

effectively, a VLIW compiler can produce code that makes fullest advantage of the 

VLIW hardware for a high level of ILP and efficiency.  As with pipeline designs, the 

challenge is to make sure the greatest amount of hardware is being utilized on each 

clock, so that the desired efficiency is achieved.  An example of a modern VLIW 

architecture is the IA-64 architecture used in the Intel Itanium processor.  VLIW 

architectures emphasize simpler hardware and high parallelism, but with very 

complex compiler design required.  

Processor Architectures – DSP

Digital Signal Processors (DSPs) are a class of processors that are optimized for 

high throughput computations on large amounts of data.  Many DSPs operate on 
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streams of data, and are optimized for arithmetic operations on those streams.  DSP 

does not specifically associate itself with any specific architecture, and so a DSP is 

not, for example, always RISC, or CISC, or VLIW, although in fact DSPs exist that 

can be categorized as such.  DSPs are processors, in that they do process instructions 

and operate on data, but compared to a GPP, a DSP is typically not designed to 

handle peripheral operations, or control flow, rather, it is mainly for processing 

arithmetic operations.  DSP instructions are typically simpler than GPP instructions, 

and typically use fixed-point formats as opposed to floating-point.  DSPs use integer, 

fractional, and custom numeric formats whereas GPPs typically use standard integer 

and floating-point formats.  Most instructions are based on multiply-accumulate 

(MAC) operations and are scheduled by the compiler, while GPPs many times use 

more complex, dynamically scheduled instructions.  

All this being said, there are a few types of DSP architectures that are more 

common than others.  DSP designs based on dual MACs, SIMD, VLIW, and 

superscalar DSPs are common.  A dual MAC design uses two multiply-accumulate 

units run by one instruction, in order to process incoming data in parallel.  SIMD 

refers to running one single instruction on multiple data values, and superscalar and 

VLIW were discussed previously.  In general, DSP architectures emphasize 

simplicity in programming, complexity in hardware, real-time results and high 

throughput on large amounts of input data.  Various custom DSP designs have been 

developed, in order to very closely match the needs of an algorithm domain with 
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more customized hardware than if a GPP were used.    Examples include the 

TICC55x SIMD machine, the TigerShark VLIW, and ZSP superscalar processors.  

Fetch Order, Cache, and Order of Execution

The earliest processors ran all instructions in order, as written by the assembly 

or machine code programmers.  Many modern processors have out-of-order 

execution, and a host of newer architectures that correspond to out-of-order 

processing.  Instructions can be fetched in order, possibly more than one at a time, 

then entered into scheduler hardware, where the decision to execute the instruction is 

made based on the availability of hardware modules, and based on dependencies that 

might exist between instructions.  Out-of-order processors are typically superscalar, 

and have multiple ALUs, memories, etc.  These processor also employ cache, either 

for instructions, for memory accesses or for both.  Cache is used as a small, fast 

memory used to speed up operations that would otherwise have to access larger 

slower memory.  For example a processor might be designed to access a hard-disk, 

but for faster operation and less slow memory accesses to the hard-disk, a small static 

RAM can be used as a cache, and can increase efficiency.  Memory hierarchy design 

is a topic in itself, and will not be covered in depth here, except to say that the 

memory system design can be just as important as any other decision in processor 

system design.  For small ultra-low-power embedded processors, typically only some 

form of EPROM, EEPROM and RAM are used, and larger memory structures 

utilizing multiple levels of memory are not an issue.  On the other hand though, 
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silicon is becoming increasingly smaller, and even low-power processors such as 

some ARM core based devices include pipelined designs with cache memory.  The 

textbooks on computer architecture [29] by Hennessey and Patterson are great 

resources to learn more about memory design and are offered here as reference.  As 

we will see in Chapter 5, in this study cache memory is not needed in order to design 

an efficient processor for GFM.  

Floating-Point to Fixed-Point ConversionFloating-Point to Fixed-Point Conversion

This sub-section is about a very important software implementation technique. 

If done correctly, the technique of converting floating-point algorithm code to fixed-

point can yield a design with higher performance and less area and power.  In fact, 

although this technique is technically a software technique, and can be done on its 

own without hardware customization, it can also be a part of a hardware/software co-

design flow (to be discussed in the next chapter), where hardware is customized with 

the resulting fixed-point algorithm in mind.  It is certainly the case that converting the 

GFM algorithm to fixed-point is a good choice, and the technique will be detailed 

here.  

Numeric Representations

The term fixed-point [20][21] refers to a numerical representation where the 

position of the decimal point is fixed relative to the bits in the number.  For example, 

the binary number 0101 can be used to represent the decimal value 5, if we assume 
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the decimal point is fixed to the right of the right-most (least significant) bit.  The 

same value 0101 can also be used to represent 2.5, if we assume the decimal point is 

fixed to the left of the same bit.  Fixed-point numbers can be signed or unsigned, but 

the main idea is that the decimal point is fixed in place.  A fractional form of a fixed-

point number simply refers to a fixed-point number where all bits are understood to 

represent bits in behind the decimal point, so that there is no integer part.  

Fixed-point format is widely used across the board in terms of hardware 

implementation options, including GPPs, DSPs, and even ASIPs and ASICs.  It 

allows for simple hardware to perform arithmetic operations on these values in a way 

that takes less area, time, and energy than floating-point formats.  The reason is that 

fixed-point hardware does not need to know or even care about the location of the 

decimal point.  For example, if you want to add binary numbers 0100 and 0110, you 

can assume the value is an integer (non-fractional) and add them for a result of 1010. 

The corresponding hardware works the same way.  Using a basic 4-bit adder digital 

logic circuit, you can input both numbers and get that result.  Now if in fact the 

decimal point was understood to be in front of the first bit (from the right), that does 

not change the answer.  

To see this more clearly, note that adding binary integers 0100 and 0110 

amounts to adding decimal 4 and 6 for a result of 10.  This matches the binary value 

of 1010 we got from adding the binary numbers.  Now suppose there is a decimal 

point such that we are adding values 010.0 and 011.0.  In decimal, we are adding the 
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numbers 2 and 3, and we should get 5.  If we take the same result 1010 and place the 

decimal point in the same position in the result, we see that in fact 101.0 is still 

correct, having the value of 5.  The point is that on a basic level, fixed-point 

representations require only simple binary arithmetic hardware, and as we will see 

that is much simpler than floating-point hardware.   As we will see, there are 

enhancements that can be added to fixed-point representations and to the 

corresponding hardware, but on a basic level the hardware is as simple as described 

here.  For example, in fixed-point implementations, guarding, rounding, truncation 

and saturation play an important part in defining the underlying ALU operations. 

Fixed-point formats are denoted as QD(m.f), where D refers to the number base (2 for 

binary), m is the number of integer magnitude bits, and f is the number of fractional 

bits.  Using this notation, Q2(16.4) refers to base 2 binary data with 16 bits integer 

part and 4 bits fractional.  

The term floating-point (f.p.) refers to a fractional numerical representation 

where the decimal is not in a fixed position.  In other words, the decimal point 

“floats” within the value, and the meaning of a floating-point formatted number 

depends on knowing its location.  Floating-point representation reserves some of the 

bits in the value for a fractional integer part called the mantissa, and some for an 

exponent.  A popular format is the standardized IEEE 754 Single-Precision Floating-

Point Format [37].  This format uses 1 bit for the sign, 8 bits for the exponent and 23 

bits for the fractional part.  There is also a bias on the exponent, a value of 127, and 
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special encodings for zero and infinity.  Note that performing arithmetic on floating-

point numbers means handling the various parts of the value separately, and floating-

point hardware is relatively complex.  

Although floating-point hardware requires more complex operations than fixed-

point, it can be efficiently parallelized so that multiple f.p. operations can take place 

at once.  Pipelined floating-point ALU designs exist that break up the various 

operations in floating arithmetic into pipeline stages.  For example, in [36], a FPU for 

add and subtract operations breaks up the operation into 5 different stages including 

sub-normal detection, pre-normalization, add/subtract, post-normalization, and 

exception handling.  This sort of pipeline allows otherwise cycle intensive f.p. 

operations to be completed on each clock, when many such independent operations 

need to be performed and can be correspondingly started on each clock.  Pipelined 

floating-point multiplication and division can be much more complex than addition 

and subtraction, and pipelined designs exist for those operations as well.  

When speaking of floating- and fixed-point numerical formats, we need to also 

understand a bit about noise, distortion, dynamic range, and precision.  The dynamic 

range of the numerical format refers to the maximum value - the minimum value.  For 

example, for 8-bit data, the dynamic range is 255.  IEEE 754 Single-Precision 

Floating-Point Format has a range of 3.4e^38 – 1.18e^-38.  Range for fixed-point 

numbers depends on the number of bits, and how many bits are for integer and for 

fraction.  The precision is the smallest value that can be represented, for example the 
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number 001 for integer systems.  Distortion is when the input to output function is 

nonlinear.  For example, when data overflows from arithmetic operations, truncation 

can introduce distortion since the true answer should have been different.  

When using floating point formats, you get a very high dynamic range and 

precision, but also slower and more expensive and complicated hardware.  With 

fixed-point, you get low range and precision, but very fast and cheap hardware.  It 

depends on what the application requires as to whether to use one or the other.  For 

example, if a system is to be built that accepts integer data from 0 to 100 as input and 

always produces integer data from 0 to 10 as output, there would be no reason for 

using floating-point hardware.  On the other hand, some applications require many 

high dynamic range, high precision calculations to be performed quickly, and 

floating-point might be the only possible solution.  

Conversion

We have seen how different numeric formats give different dynamic range, 

precision, and require more or less complex hardware.  There is another point then 

that needs to be discussed, which is whether or not to convert an algorithm from 

floating-point to fixed point.  Of course, the decision is based on whether or not the 

increased range and precision is required by the application, and whether or not the 

benefit of the more complex hardware outweighs its cost.  Converting from floating-

point to fixed-point is complicated, but if done well, can produce a much more energy 

efficient implementation with smaller and faster hardware, with only modest 



77

reduction in accuracy.  As part of a custom hardware design flow, converting to 

fixed-point involves some work on the algorithm up-front, but with the benefit of 

reducing design time in lieu of having to design complex floating-point hardware.  

If we were able to use infinitely many integer and fractional bits, we could 

easily convert from floating- to fixed-point, but the issue lies in the fact that we 

cannot.  We have to choose how many bits to use for the integer part, and how many 

for the fractional part.  In other words, we need to set the inherent range and precision 

in the system when converting to floating-point.  This can be daunting at first, since, 

when working with floating-point in a high-level language, most of the underlying 

details of the numeric format are not even paid attention to.  In a fixed-point system, 

the choice of format determines the accuracy of the system outputs.  Given a finite 

number of bits, either we choose a high range, or high precision, or some trade-off 

point, but in any case we usually end up with less accuracy as compared to the 

floating-point version.  How much of a difference is noticeable and acceptable is up 

the designer.  

One part of this conversion process is called scaling.  Scaling refers to the idea 

that once you constrain all your values to a fixed-point format, you now need to make 

sure results of intermediate computation do not exceed the maximum or minimum 

values of the format.  For example, if the fixed point format is 4 bits integer, and 4 

bits fraction, and you want to multiply 5 times 5, the result is too large to fit in the 

format.  The problem can be fixed in various ways, one being to make make sure all 
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the values input to that particular multiplication never result in an overflow.  If certain 

values or intermediate values become too large in the process of performing 

arithmetic operations, then those values can be scaled such that they do not overflow 

the bounds of the numeric format.  

As an example, consider that in a block of code from a program, you want to 

multiply three numbers A*B*C.  Suppose the numeric format is Q2(8.0), 8-bit integer 

data.    Now, if the values of A, B, and C all range from 0 to 2, the largest result is 8, 

which is well within the range of an 8-bit integer.  The problem arises when you have 

three values that can each range from 0 to 125, where the largest result of A*B*C 

cannot fit within the numeric format.  What you can do then, is to scale one or more 

of the variables A,B,and C, so that given the typical range of values for the three 

variables, the result of this operation never overflows.  For example, if all values were 

scaled so that they were all 6 or less, 6*6*6 would fit within the format.  

Of course with fractional data, scaling becomes more difficult since you are 

dealing with possibly very small data as well as large data, and scaling can effect the 

accuracy and precision of results.  Although you might scale values initially so that 

arithmetic results do not overflow, you eventually may need to scale values back to 

put the number back in the correct format.  If you have three numbers A, B, C all in 

Q2(18.14) format (32 bits with 18 bits integer), and you scale them all by dividing by 

100, then you multiply all of them together, you need to multiply the result by 100 to 
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get the true answer back.  By doing this, you can allow the operations to take place 

without overflowing or otherwise violating the numeric format during intermediate 

operations, and by choosing the scale factors carefully, you can optimize how much 

range and precision you get out of the final answer.  Note that this is all in an attempt 

to get as much range and precision as possible out of a fixed-point format using 

simpler and cheaper hardware.  

To do this, theoretically you could monitor (by profiling) the value of each 

variable and each intermediate result, while iterating through different scale factors 

for each variable and arithmetic result, to achieve the highest possible optimization. 

It is very important to not that each time to introduce a scale factor operation, you 

introduce more cycles in the operation of the processor running the algorithm.  This 

means to optimize scaling you need to do it as little as possible, and in just the right 

places in the algorithm.  In addition, the input vectors used to choose the scaling 

factors have to be robust enough to allow you to choose the right values and the right 

variables to scale.  The method used by the author in this study was to run the GFM 

algorithm and output variable and intermediate result values to a file while running 

the program.  Values that had very large (or small) values or intermediate operations 

that resulted in very large (or small) values were scaled appropriately.  At each 

iteration, the scale factors were refined so that eventually all variables and 

intermediate values took full advantage of the numeric format, never overflow or 

violate the format given valid input data, and so that results are as accurate as 
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possible.  The GFM algorithm was in fact converted from floating-point to fixed-

point in this study.  The resulting format used was Q2(18.14) with various scale 

factors introduced into the code on certain variables and after certain intermediate 

results of arithmetic operations.  The efficacy of this transformation will be discussed 

more in Chapter 5.  
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Chapter 4: Hardware/Software Co-Design and Design Flows

In the previous chapter, it was hinted at that an ASIP solution best fits the GFM 

algorithm and dive computer application.  It will become more clear in the next 

chapter why that is, and for now we turn our attention to a related topic – 

hardware/software co-design.  Hardware/Software Co-design refers to the fact that 

when a customized processor is designed, it requires not only hardware design, but 

also software design, and in fact they need to occur concurrently particularly within 

the design flow of ASIP, or DSSP/DSP.  This chapter will explain a typical design 

flow for ASIP type hardware, while clarifying what is meant by hw/sw co-design and 

why it is important.  

ASIP Design FlowASIP Design Flow

There are many ways to describe the design flow of an ASIP, but the one 

chosen here and used in this study is as described in [17].  The design process is one 

that includes starting with design inputs, partitioning the design between HW and 

SW, following parallel paths between HW and SW design, and ending with 

integration and testing.  We can visualize this as given in the diagram in Figure 14. 

Note that both the HW ans SW design flows start with a specification, then either 

modeling or programming, simulation, and eventually implementation.  The arrows in 

between the HW and SW design flows illustrate the point that HW and SW need to be 

designed concurrently, and in fact both sides influence and dictate the design of the 
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other side.  The most clear example of this is that of when an ISA and firmware is 

defined for the hardware,  the programming usually has to change to make full use of 

that choice.  If, for example, in hardware a module is designed to perform division as 

on operation, software needs to be re-written so that division is not done in software, 

but rather by invoking the new hardware module.  In the case of an ASIP, where 

custom modules, memory structures, and instructions are designed for a specific 

application, it is required that for the most efficient design that a HW/SW co-design 

process is followed.  

Under this umbrella of HW/SW Co-Design are the topics of firmware design, 

benchmarking, application and instruction set profiling, requirements specification, 

and of course all the topics falling under the processor core design.  An ASIP design 

Figure 14: HW/SW Co-Design Flow
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typically involves multiple teams, each of them containing experts in each sub-topic, 

utilized in order to arrive at the most efficient design possible.  Experts from both 

ends of the spectrum including software design and programming, processor design, 

application profiling, firmware design, integrated design environment (IDE) 

designers, and even VLSI designers all can have inputs into an ASIP design.  The 

goal is to accurately define and design hardware for the specific application such that 

no other implementation, except possibly a full ASIC design, can compete in terms of 

performance and energy efficiency.  

In recent years a good deal of effort has gone into designing automated IDEs 

that can efficiently profile an application, define and implement custom hardware and 

firmware systems, and produce an ASIP design automatically.  Some tools available 

use so-called architecture description languages (ADLs) for use in describing higher-

level architectures, so that different options can be iterated through and to eventually 

arrive at the most optimal architecture for a given application.  These tools are 

extremely expensive, but can reduce the design time considerably compared to a 

totally manual design.  

For example, one such product quoted by the author of this paper was on the 

order of $50,000 for a single license.  This cost comes along with a high learning 

curve to learn the tools and make efficient use of them.  This means such tools can in 

fact be out of reach for many designers, either because of the time-line needed to 

learn the tools, or because of the associated cost.  Another point is that these tools rely 
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on somewhat pre-defined architecture options, and so can actually be limiting in 

terms of their capability to output efficient designs for specific applications.  For 

example, the Processor Designer tool [38] from CoWare allows a designer to specify 

the number of stages and other options within a RISC-type pipeline design, in order 

to find the most efficient implementation.  Another tool performs analysis on high-

level C-code in order to automatically decide what custom instructions can be 

implemented to increase efficiency.  
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Chapter 5: Optimizing Hardware for GFM

SummarySummary

In this chapter a specific design for optimizing hardware for the Gas Formation 

Model will be presented.   The chapter will be loosely organized following the ASIP 

design flow described in Chapter 4 and illustrated in Figure 14.  Because the design 

flow is iterative, and moves back and forth between hardware and software design, 

the information here will not be entirely linear.  Information will be presented on each 

relevant section, and then we will revisit various sections as required.  This chapter 

starts with information on high level application profiling, then hardware/software 

partitioning and system design, followed by low level profiling.  Note that all that was 

done using the algorithm in its original form as a high precision floating-point 

routine.  Later the results of floating-point to fixed-point conversion are given, 

followed by fixed-point profiling results.  From the large amount of profile 

information, later sections discuss design choices made at an architectural level, in 

terms of instruction set and firmware design, processor core architecture, memory and 

i/o system design, and toolset design.  All this is part of the hardware/software co-

design flow described in Chapter 4.  
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High-Level Application Profiling (Floating-Point)High-Level Application Profiling (Floating-Point)

In Chapter 1, we explored the application itself, and defined performance, 

power, and area constraints.  Although we know the application is relatively 

demanding, we need a more concrete measure of how demanding it is, in order to be 

able to select a design path for customizing hardware.  In addition, we need to make a 

reasonable decision in terms of which portions of the program to accelerate with 

custom hardware.  These choices are made by doing thorough application profiling, 

and this section will describe results of such profiling, and decision made based on 

those results.  

Application profiling has multiple uses.  At a high level, profiling of the high 

level language version of the algorithm can help roughly identify which instructions 

are executed most often, and correspondingly where hardware acceleration may help 

optimize the system.  There is a rule of thumb mentioned in [17], termed the 10/90 

rule.  What this refers to is that for application that can benefit from acceleration by 

hardware, many times 10% of the code is executed 90% of the time, and so in that 

case the code that represents the most executed 10% is the portion you want to focus 

on accelerating.  Of course whether there is a block of code that fits those numbers 

exactly depends on the application, and the specific ratio is not important, but the idea 

is that is that you want to identify which code needs to be optimized or not.  In fact 

the GFM algorithm code running inside a dive computer falls into this category and 

so is a good candidate for acceleration.  
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We can begin by looking at profiling results on the high-level C-code in full 

precision floating-point format.  Using this program implementation, each line of C 

code can be given a count each time it executes during the dive sets 1 through 4 given 

in Chapter 1.  Recall that each dive includes the real-time state computation that gives 

the free gas related to the specific dive being simulated, as well as all the prediction 

calculations run at each and every time-step as explained in Chapter 1.  This typically 

amounts to millions of time-steps being run over the course of each dive.  By looking 

at line counts for each line of C-code, we can see if there are blocks of code that are 

good candidates for acceleration.  

At this point it is important to take a look again at the dive computer as a 

system, at a higher level.  We will be deciding here that it is the entire base GFM 

algorithm routine that needs to be accelerated, but we need to take a step back to 

understand why.  Recall that dive computer performs many functions, including 

storing dive data in non-volatile memory for later retrieval, controlling and displaying 

information on the output display, and processing user input.  Because the author 

works for a dive computer manufacturer, it can be reported here that for a top-of-the-

line product like the OC1 made by Oceanic [39], there are over 50,000 lines of 

compiled and hand-written assembly code.  The code for the GFM routine is less than 

100 lines of C-code.  When compiled, the actual count of assembly lines of code of 

course depends on the compiler and processor used.  If we say that each line of C-

code converts to 50 lines of assembly (to be extremely conservative), still we can say 
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that the GFM algorithm makes up only 10% of the code.  From compilation results 

using an IAR C-compiler for an ARM7TDI 32-bit target device and for a 16-bit 

MSP430 target, with full optimizations on, the floating-point version program code 

compiles to under 4kb in both cases, whereas the entire dive computer product 

compiles to well over 100kb of code.  

Dive sets 1 through 4 from the standard dive profiles represent 96 different 

dives, spanning thousands of minutes and literally trillions of lines of executed c-

code.  The dive descriptions were given in Chapter 1, and here we will analyze the 

instruction profile.  In a custom, automated program designed for profiling, each line 

in the basic GFM routine's main loop (after initialization), was given a line number. 

Each time the line was executed a count was incremented corresponding to that line. 

The results from a selection of the 96 dives are given in Figures 15 - Figure 24.  Note 

that each figure includes 4 dives, representing dives out to the NO-D limit, out to ½ 

the NO-D limit, and with and without a safety stop of 3 minutes at 15 ft.  Analysis of 

the figures follows.  
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Figure 15: Instruction Profiling Results, 21% FO2, 180ft
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Figure 16: Instruction Profiling Results, 21% FO2, 140ft
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Figure 17: Instruction Profiling Results, 21% FO2, 100ft
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Figure 18: Instruction Profiling Results, 21% FO2, 60ft
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Figure 19: Instruction Profiling Results, 21% FO2, 40ft
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Figure 20: Instruction Profiling Results, 20% FO2, 180ft
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Figure 21: Instruction Profiling Results, 30% FO2, 140ft
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Figure 22: Instruction Profiling Results, 30% FO2, 100ft
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Figure 23: Instruction Profiling Results, 30% FO2, 60ft
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In the profiling results above, we see that over the course of the dives, the GFM 

routine (including prediction calculations at each time-step as defined in Chapter 1) 

amounts to hundreds of millions of executions of particular lines of code within the 

GFM time-step routine.  For example in Figure 24, lines 8 and 9 were executed 

between 1.4 and 2.6 billion times over the course of the length of the dives.  We do 

see some differences with the different dives within each figure, but those differences 

are expected since dives without a safety stop are inherently shorter, and dives that go 

out to ½ of the NO-D time are shorter as well.  Shorter dives always have fewer lines 

executed, since the number of times the time-step is run is directly related to the 

length of the dive.  

Figure 24: Instruction Profiling Results, 30% FO2, 40ft
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Within each time-step there are some variations as well, and this is what is 

called program phase information.  Phase information is related to branches in the 

program, and whether or not branches are taken or not taken given different inputs. 

Fortunately for GFM, the only time the time-step routine branches is where free gas 

either forming or not forming.  For example, between lines 30 and 35 in the reference 

program code of the GFM patent, there is a condition that is tested such that if 

variable p(nx) is greater than pN2, then variable GF(nx) is calculated.  This value for 

GF represents gas formation, and this condition being tested depends on the dive 

profile being run.  The point is that different dives will either satisfy or not satisfy this 

condition, and it depends on what portion of the dive is being run at any given time. 

In the beginning of a dive, where the diver has just descended to the bottom depth, for 

example, gas has not yet formed, and so the condition will not be satisfied.  What this 

means is that this condition contributes to the program's phase, and so accurate cycle 

counts and profiling results depend very much on what type of dive and in what phase 

of the dive you are analyzing.  

It turns out, however, that in fact as you can see from the aforementioned 

figures, this phase information is hardly noticeable.  For example, if we look at Figure 

15, line 20 represents the “if” statement condition, and line 21 represents the 

condition being satisfied.  If you take the counts for each line, and normalize over the 

number of times the routine is called, you will see that in fact line 20 is called exactly 

20 times for each dive, as expected.   Line 21 however, is called a different number of 
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times for each dive.  For the first dive (NO-D, no ss) it is called 478,392 times 

(normalized as 0.624 times per time-step), for the second dive it is 0.371 times per 

time-step, 0.557 per time-step for the third dive, and so on.  In all cases, given these 

96 dive types, line 21 is called less than once per time-step, while others are called as 

much as 168 times per time-step, and in fact the average normalized value over all 

dives is 0.43 times per time-step.  

Beside interesting observations about particular lines of code, what is more 

interesting is that throughout all the dives the overall characteristic is the same.  As 

was mentioned previously, where there is more or less dive time there are expected 

differences, but on average we can say that the instruction profile is more or less 

constant when normalized to count per time-step.  One important observation we 

want to make is about the high counts within the routine.  Since these lines of C-code 

correspond to multiple instructions in assembly, and multiple execution cycles, we 

can say that the GFM routine requires literally trillions of cycles in execution during 

typical operation for a typical dive scenario.  Even if we consider a processor 

architecture that has a deep pipeline that parallelizes operations, unless we use 

multiple processors in addition, cycle counts over a dive and over the life of a product 

are staggering.  On the other hand, this observation that it is in fact the GFM routine 

that needs to be optimized offers an opportunity where customized hardware can 

bring the design concept from the realm of the theoretical to that of practicality.  

Although we cannot easily provide here cycle counts for an entire dive 
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computer system including all the management, storage, user input, and output 

display activities, we can in fact say that compared to GFM, those operations are 

entirely negligible.  One way to see this roughly is simply by timing the other 

peripheral activities in the dive computer, and comparing those to that of running 

GFM within the same system.  The OC1 product uses a 1/8 second interrupt system 

where all peripheral activities performed have to fully complete within that time. 

Most activities are complete well within 50ms, although some display routines 

require up to 110ms.  

If the required GFM computation was run within the same sort of system like 

the OC1 on a 16-bit MSP430 device, it would require roughly 227000 cycles per 

time-step.  Running at a relatively high frequency of 8 Mhz, and assuming a single 

processor system, 227000 cycles would take 28ms per step.  Considering that 

Constraint 2a stipulates that we need to perform 2711 time-steps every 6s, and that 

2711 time-steps would take 76 seconds, it is clear that the constraint cannot be met, at 

least using a 16-bit microprocessor like the MSP430.  We can consider a much more 

powerful and efficient processor like an ARM7, but even then at 45007 cycles per 

step, the 2711 time-steps would still take over 15 seconds to complete, thus still not 

meeting the constraint.    

Note that given a specific frequency we can in fact calculate how many cycles 

an implementation cannot exceed in order to just meet Constraint 2a.  At 8 MHz for 

example, an implementation would need to process time-steps within 17705 cycles in 
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order to meet Constraint 2a.  In fact, a better design should meet Constraint 2b, and so 

we can say that a processor should be able to process each time-step in half that time 

(8852 cycles) while the other half of the time it is held in a low-power state.  Again it 

should be noted that this is in reference to a one-processor system running at 8MHz. 

Dive computer products like the OC1 rarely operate at frequencies above 8MHz due 

to their low-power nature.  This goal is aggressive, but can be done, and the design 

choices made in this study will show how this goal can be met.  

From examining the profile information at a high-level, we have learned a 

couple things, and make a couple design decisions.  First, we know that the 

computation of the GFM algorithm is in fact the most important portion of the 

program to focus on in terms of customizing hardware.  Within a dive computer 

system, and over the life of typical operation and even the life of the product, the 

computation of system activities is totally negligible when compared to computing 

GFM.  That means any hardware acceleration should be focused on accelerating 

GFM itself, and not other important dive computer code.  In fact, even higher-level 

routines related to GFM (like simulating dive profiles, retrieving and storing FGV 

values and prediction results, interpolating or calculating on prediction results, etc) 

are also negligible when compared to the immense cycle counts required for the basic 

GFM routine to run while meeting performance constraints.  

Secondly, we know that we should accelerate the entire base GFM routine, as 

opposed to finding portions within the routine to accelerate.  Because of the 
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incredibly high numbers of calculations needed, even lines of code that are only 

executed once per step are still in very high numbers over the course of a dive, or the 

the life of the product.  Some lines are executed more than others, but on a whole, 

hardware needs to be customized so that the entire routine can be run in a number of 

cycles that amount to orders of magnitude less than the current implementation.  

HW/SW PartitioningHW/SW Partitioning

For the reasons explained in the previous section, we can now present a block 

diagram of what a customized GFM dive computer system should look like at a high-

level.  The concept is in fact intuitive, but the analysis was required in order to make 

sure intuition was not hiding unseen factors.  In fact intuition is correct, and so the 

concept for the most efficient GFM-based dive computer is that of a GFM co-

processor.  The concept of a GFM co-processor is that a customized processor should 

be designed that primarily computes the base GFM routine itself, much more 

efficiently than a GPP can.  The rest of the dive computer system would be handled 

as is done today, using a low-power general-purpose processor, and should have an 

interface to input and output information to an from the GFM co-processor.  The 

concept of a co-processor is descriptive, but in terms of terminology we will simply 

refer to it as a custom processor for GFM.  

Figure 25 shows such a processor interfaced with a main dive computer system 

processor.  Note that this partitioning of the dive computer system also takes into 
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account the i/o requirements of communicating with the GFM processor.  Although 

the GFM routine requires a great deal of computation and efficiency, it needs to 

communicate with the main microprocessor only every 6s.  Communication to and 

from the main microprocessor is needed in order to input the current depth, and to 

output the current computation results of either the real-time state or prediction 

results. In fact the data can even be processed on the main micro, and only the most 

basic GFM routine can be handled in the custom processor.  

This type of system design would also allow for GFM to be added to any product 

with minimal design time.  Given a well designed, efficient and high performance 

custom GFM (co-)processor, the dive computer system designer needs only to drop in 

the IC, interface to it, and process the data according to the specific product design 

for which GFM is being used.  Because GFM models physiological phenomena in the 

human body, there are various other applications where it can be used, for example 

Figure 25: GFM-based dive computer system concept 
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medical visualization software, where GFM and the custom co-processor could play 

an important part in optimizing computation.  

Low-Level Application Profiling (Floating-Point)Low-Level Application Profiling (Floating-Point)

To design custom hardware, as we saw in the last chapter, part of the design 

flow is also to profile the application at a low level while concurrently making 

changes and redesigning both hardware and software.  To do this, you need to have 

an initial hardware implementation for which to code the algorithm.  When the goal is 

to design custom hardware, what you can do is start with a reference processor core 

and implementation.  The first phase of this project involved using the full-accuracy 

floating-point algorithm code version unchanged, and to profile and customize an out-

of-order RISC-based processor core using the Simplescalar tool set.  SimpleScalar is 

a freely available simulator that can be used to evaluate different architecture options 

for various targets, specifically including the PISA, MIPS-IV-based instruction set 

architecture (ISA). It can simulate and characterize a 32-bit out-of-order pipelined 

processor architecture, using specific hardware options selected by the user. It is also 

extensible, with the ability of adding custom instructions and custom hardware units. 

This was done as a reference point, as a source of profiling information on a RISC-

type processor core, and to investigate how aggressively a modern out-of-order 

processor could be customized to reduce the cycle count given the GFM algorithm as 

the benchmark.  The gcc cross-compiler version 2.7.2.3 ported for the PISA 
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architecture was used with high optimization option -O3.  Application profile 

information was obtained using sim-profile from the tool set, and the out of order 

simulator sim-outorder was used to obtain cycle count information. 

It was desired to find a correlation between the hardware architecture options 

(cache levels/sizes, number of arithmetic units, etc) and the cycle count output.  To 

take interactions between parameters into account, and for a more robust evaluation, a 

Placket and Burmann Statistical Fractional-Factorial Design of Experiment (DOE) 

methodology was used, and the methodology described in [40] was followed almost 

exactly.  Area estimation was performed using the SimpleScalar Estimator tool [41]. 

Simulations were performed and design changes were iterated systematically to 

reduce cycle count.  The purpose of the P&B DOE is to isolate those design 

parameters (in this case Simplescalar architecture options) that contribute most to 

cycle count.  By doing this, you can then set those parameters with highest influence 

on cycle count to a relatively high value, and those with lesser impact to lesser values, 

in order to not waste resources and power.  For example, if the DOE showed that the 

number of integer ALUs was the most influential, while cache size is not important at 

all, then the number of integer ALUs might be set to 4 while cache might be 

eliminated.  In this way, the DOE results can be used to customize the Simplescalar 

core such that the design specifically caters to the needs of the GF algorithm, and then 

by profiling GFM on that configuration we can gain more insight into how a totally 

custom core can be designed for more efficiency.  
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TABLE I: Simplescalar Configuration

Sim-outorder Parameter Value
RUU Capacity (# instr.) 64
# Integer ALUs 3
Branch Mis-pred. Latency  (cycles) 1
Issue Width (instr. / cycle) 4
Load/Store Queue Capacity (# instr.) 32
Decode Width (instr. / cycle) 4
Instruction Fetch Size (# instr.) 8
Bimodal Branch  Predictor Table Size 256
# Floating-Point Multipliers/Dividers 1
Width of Memory Bus (# bytes) 4
# Floating-Point ALUs 1
# Integer Multipliers/Dividers 1
Data Cache None
Instruction Cache None
Fetch Speed 1
Memory Latency 18,2
Cache:icompress true
bpred bimod

Table I: Simplescalar configuration for customized PISA core.  

The DOE led to a high performance design with a cycle count of 2418 cycles, a 

cycle per instruction (CPI) of 0.384, and with an estimated area of 2858 millions of 

square lambda and 1.5 million transistors. The customized PISA core design would 

meet the real-time performance constraint with a modest frequency of just over 1 

MHz, and the corresponding Simplescalar parameters are given in Table I.  Those 

parameters not listed in the table were given default values.  Note that this aggressive 

design customization for performance amounts to a 95% performance speedup (a 

factor of 18) as compared to the cycle count on ARM7TDMI for the software 
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floating-point version.  This design configuration would be great except that in the 

DOE the only consideration made was for performance, and so the design is surely 

not as efficient as it could be.  

We can learn a good deal from looking at the profile information from the GFM 

code run using this Simplescalar configuration.  The figures that follow show the 

results of running the standard dive sets using the customized Simplescalar processor 

core configuration.  We will analyze the Instruction Profile, Instruction Class Profile, 

Branch Instruction Profile, Addressing Mode Profile, and Load/Store Address 

Segment Profile.   Even though these profile data are specific to the RISC hardware 

simulated by Simplescalar, they can still give important insight into what the 

algorithm requires, and this information will be used to make decisions on what 

characteristics the customized hardware should have.  

Figure 26 shows the distribution of the instruction classes used in the program. 

We see that only 23% of the instructions are actually implemented with floating-point 

instructions, while 38% of instructions are integer operations. Integer operations are 

so numerous because they include address computations and other overhead in loops, 

branches, comparisons, and intermediate operations. The next largest components of 

the distribution are load, then unconditional branches, and then stores, although they 

only contribute less than 38% of the instructions. Interesting to note is that on a 

processor like the 16-bit MSP430, since there is no floating-point hardware, a similar 

evaluation yields around 100,000 integer operations per loop. Since floating-point 
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instructions take many cycles and use multiple instructions, this reduced instruction 

count here is expected. For example consider that you have 1475 floating-point 

multiplication operations. Assume each operation takes 87 cycles, including overhead 

of 8 cycles for calling and returning from the multiplication routine. That amounts to 

over 11,000 cycles simply in overhead of calling the f.p. routine. The total cycle 

count is over 120000, and roughly matches the type of numbers you would see on a 

16-bit platform like the MSP430.  If we suppose we are running at 8MHz, then 

11,000 cycles takes roughly 1.4ms. That means in a given GFM calculation taking 

5000 time-steps, it would take the MSP430 75 seconds to complete the calculation, 

and almost 7 seconds of that would be overhead in calling floating-point routines. 

With the compilation statistics given here, a running frequency of 8MHz, and an 

average (ideal maximum) cycles per instruction (CPI) of 1.0 in a 3-stage pipelined 

architecture, the 75 second calculation would reduce to around 23 seconds. In fact 

these numbers are in the correct ballpark for actual measurements made on the 

MSP430 vs. an ARM7-based product that uses a 3-stage pipelined architecture. 

Another interesting set of data is that of the most frequent instructions used in 

the compiled program. Figure 28 shows the 8 most frequently used instructions, 

comprising 87% of the total instructions in the program. The break down of 

instructions is as follows: the largest percentage of instructions are floating-point 

single-precision loads, immediate unsigned integer addition, single-precision floating-

point multiplication, unsigned integer addition, single-precision floating-point 



105

subtraction, store single-precision floating-point, shift left, and finally single-

precision floating-point addition. It is important to note here that instruction counts do 

not inherently indicate execute time, since some instructions can take longer than 

others, and memory access times are not included in such a comparison. Other 

statistics include the branch instruction profile, which indicates that 87% of branches 

used conditional direct type branches, and the addressing mode profile indicated that 

97% of instructions used register + constant addressing.

Figure 26: Instruction class profile from Simplescalar profiling results
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Figure 27: Branch Instruction profile from Simplescalar profiling results

Branch Ins truction Profile

87%

11% 1%1%
0%

0%

cond direct

uncond direct

uncond indirect     

call direct

call indirect

cond indirect

Figure 28: Instruction profile from Simplescalar profiling results
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Figure 29: Addressing mode profile from Simplescalar profiling results
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Figure 30: LD/ST address segment profile profiling results from Simplescalar
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From the addressing mode profile information we can see that there is no need 

for so many addressing modes, since 97% of operations use one type of addressing. 

When designing a custom processor core, a good deal of complexity can be removed 

by only including the required addressing modes for the application, since the 

processor would no longer need to have hardware capable of decoding the other 

unneeded modes.  From the load/store address segment profile, we see that virtually 

all instruction operate on data memory.  This is as opposed to an algorithm that makes 

a lot of subroutine calls (using more stack memory), or that allocates a lot of memory 

at runtime (using more heap memory).  As we could intuitively see from high-level 

code, the GFM algorithm routine is simplistic, does not contain a lot of sub-routine 

calls or memory allocation, and the profile results confirm this.  

The branch instruction profile further confirms the intuition that because of the 

large amount of time spent in loops, there is a high percentage of conditional 

branches executed.  This observation allows us to notice that providing loop support 

in hardware could offer more efficient operation.  Providing hardware loop support 

would not only reduce the number of conditional branches needed in software, but 

also the corresponding address calculation, thereby reducing integer computation as 

well.  

Another very important observation made from profiling results is that the 

Simplescalar simulator contains a much higher number of instructions than are listed 
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in the instruction profile.  What that means is that all the complexity within the 

processor core design is simply wasted space, and possibly wasted energy if those 

circuits are not fully off or in a low-power state.  An application-specific core design 

should provide only instructions explicitly needed for the GFM algorithm to run, in 

order to reduce energy and improve performance.  In general, performance can be 

increased when complexity is removed because delay time within the logic circuits 

can possibly be decreased.   In other words, in general, the less complex the processor 

core is, the faster it can operate, and so a customized core design should be a simple 

as possible, including only those instructions, addressing modes, branch types, and 

memory structures needed for the application.  This information was later used to 

define a new instruction set and processor core architecture for the GFM algorithm.  

Floating-Point to Fixed-Point Conversion ResultsFloating-Point to Fixed-Point Conversion Results

As was mentioned previously, conversion of an algorithm from floating-point 

to fixed point can allow the algorithm to be implemented using simpler, lower power 

and lower cost hardware, and to run more efficiently and in less time.  If the 

conversion to fixed-point can be done such that the resulting (usually reduced) 

accuracy is sufficient, this technique can offer a huge increase in performance and 

efficiency simply by redesigning the software implementation.  Of course, when 

converting to fixed-point, there is an inherent change being made to the target 

hardware design, but as part of a hw/sw co-design flow, hardware re-design is 
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expected anyway.  

TABLE II: Fixed- vs. Floating-Point Speedup

Processor Floating-Point
Cycles/Step

Fixed-Point
Cycles / Step Speedup %

MSP430 227000 1871129 --
Simplescalar -- 19711
ARM7TDMI 45007 15272 66
ARM9TDMI 43071 13133 70

ARM10E 41271 13133 68
XScale 41271 13133 68

CortexM1 80496 33856 58
ARM1136J 45100 13133 71

Table II: Speedup resulting from floating-point to fixed-point conversion.  ARM targets profiled on IAR compiler with full 
optimizations for speed. 

This section presents the results from converting the GFM algorithm code to 

fixed-point.  The results in Table II are in the form of cycle counts.  As was explained 

in Chapter 1, the fixed-point format used in this study was Q2(18.14).  The table 

shows the cycles counts per step for the algorithm run in its original floating-point 

implementation, and in the new fixed-point implementation.  This was done on 7 

different architectures, and the corresponding speedup resulting from the conversion 

is given in the last column.  

The results are quite impressive, with speedup ranging from 58% to 71%.  Note 

that the MSP430 is presented there only for reference.  Since it is a 16-bit machine, in 

fact the 32-bit fixed-point version is worse because it cannot do 32-bit integer 

operations at the hardware level.  On the other hand, it is interesting to see how high a 

cycle count is exhibited on that device for the floating-point version compared to 
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other architectures.  Note that none of the devices presented here have floating-point 

hardware like Simplescalar, instead they use emulated floating point software 

routines to compute floating-point results.  The fixed-point implementation cycle 

count is listed for Simplescalar, but not along with the corresponding floating-point 

count.  This is because although Simplescalar can simulate floating-point hardware, 

the compiler ported for it cannot compile using emulated (software) floating point. 

Therefore, the Simplescalar floating-point cycle count cannot be compared to the 

Simplescalar fixed-point cycle count since they represent different hardware.  All 

ARM cores are 32-bit, fixed-point hardware machines.  

The results are impressive, but it also has to be shown then that the fixed-point 

version of the algorithm is in fact valid.  To show that the fixed-point version 

performs accurately enough for the application, and that the conversion was a 

success, presented in Table III are results from running the standard dive set.  The 

results are given in terms of the main GFM output, the free gas volume.  The FGV 

values for a specific dive profile are the most important outputs, and FGVs obtained 

using a fixed-point version of the algorithm need to match results from the floating-

point version.   Table III shows the results for dives with a bottom depth of 180ft up 

to 60 ft, with and without safety stops (SS), and out to the NO-D limit, and ½ the NO-

D limit.  You can see which dives were run out to the NO-D limit by noticing which 

dives reached the critical FGV, 40ml, and those that were considerably less.  You can 

also see the effect of taking a safety stop - as expected the free gas is less when the 
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stop is taken.  

TABLE III: Fixed-Point Accuracy, FO2=21%

Table III: Standard dive set run in both floating-point and fixed-point algorithm implementation for FO2=21%

Note that as was explained in Chapter 1, all FGV values are maximum peak values 

found after the simulated diver surfaces.  It is that peak FGV value that is used to 

Floating-Point Fixed-Point
Depth SS Time (min) # Steps Max FGV Time (min) # Steps Max FGV

180 N 6.6 766129 40.2 6.7 765940 40.3
180 N 4.0 697352 23.4 4.0 697112 22.8
180 Y 6.6 842989 9.2 6.7 842590 9.0
180 Y 4.0 779294 7.8 4.0 778854 7.2
160 N 7.9 789807 40.1 8.1 798137 40.3
160 N 4.7 705146 23.3 4.7 704990 22.8
160 Y 7.9 866457 9.2 8.1 874997 9.4
160 Y 4.7 787088 6.8 4.7 786732 6.6
140 N 9.8 834890 40.1 10.3 845394 40.3
140 N 5.3 712945 21.7 5.3 712807 21.3
140 Y 9.8 911750 9.6 10.3 922044 9.7
140 Y 5.3 794687 5.4 5.3 794349 4.9
120 N 13.5 921089 40.2 13.8 925764 40.0
120 N 7.0 749552 22.3 7.0 749132 22.1
120 Y 13.5 997949 10.6 13.8 1002414 10.4
120 Y 7.0 831494 7.4 7.0 830874 7.3
100 N 19.5 1066685 40.1 20.0 1083677 40.1
100 N 9.7 809116 21.0 10.7 835550 22.1
100 Y 19.5 1143335 12.0 20.0 1160537 12.0
100 Y 9.7 891058 5.8 10.7 917292 6.4
80 N 30.3 1343695 40.1 30.9 1355036 40.0
80 N 15.3 946925 19.8 15.3 946847 18.7
80 Y 30.3 1420555 14.9 30.9 1431686 14.4
80 Y 15.3 1028667 5.2 15.3 1028389 4.8
60 N 52.4 1901589 40.0 53.3 1919344 40.0
60 N 26.0 1212749 15.8 27.0 1239632 15.9
60 Y 52.4 1978449 19.4 53.3 1995994 18.7
60 Y 26.0 1294491 3.9 27.0 1321374 5.9
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determine probability of DCS, and so it is vital for that value to be correct.  All dives 

in Table III were run using air (FO2=21%), but that the results also are representative 

of results for other mixtures as well.  

It is also important to point out that the dives that include safety stops were 

taken to the NO-D limit or ½ the NO-D limit as calculated without considering the 

safety stop, then the safety stop was taken subsequently.  This is as opposed to 

calculating new NO-D limits that consider the safety stops in the calculation, which 

would result in longer times.  For example, for the 100ft dive without a safety stop, 

the NO-D limit is 19.5, and in the table another dive is shown with a safety stop for 

the same bottom time.  This would be confusing to those who understand the 

concepts of free gas and how GFM works, except that you need to notice that the 

resulting FGV is much lower.  If the dive with a safety stop were taken out to a new 

NO-D limit that was calculated in such a way that included the safety stop, the 

resulting FGV would of course also be roughly 40 ml, and the NO-D time would be 

longer.  

Comparing the results between fixed- and floating-point, we start with the dive 

times.  Finding the NO-D limit the case of simulating these standard sets amounted to 

staying at the current depth until the immediate ascent prediction gave a FGV value 

above Vcrit (40ml).  For example, For the 100ft dive without a safety stop, the NO-D 

limit was 19.5 minutes for the floating-point version, and 20.0 minutes for the fixed-

point version.  As we know, some difference is expected due to the nature of how the 
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fixed-point implementation approximates a much higher resolution numeric format. 

Still the difference is 1 minute or less, and no more than 1.1 ml in all cases except the 

last dive, where the difference was 1 minute and 2ml.  Additional accuracy can be 

found by adjusting the scale factors in the fixed-point program code, but for a typical 

dive computer application, these results are acceptable.  

The number of steps required is large because it includes all the hundreds and 

even thousands of prediction calculations (as described in Chapter 1) performed at 

each time-step.  When the dives times between floating- and fixed-point versions 

differ by even a small amount of time, there are more or less predictions introduced, 

and therefore more or less time-steps needed.  Even so, over all dives in Table III, the 

difference in the number of time-steps run is less than 4%.  Again, this is entirely 

acceptable since times and FGVs are what need to be accurate, not necessarily the 

number of time-steps.  

The summary for this section is that tables II and III show that the fixed-point 

algorithm implementation is valid and accurate, and as we know - much more energy 

efficient than the floating-point version.  If a product designer, for example, is willing 

to live with the 1ml difference in FGV from the fixed-point version algorithm in order 

to get 66% more performance on an ARM7TDMI target for example, then this fixed-

point implementation is a great success.  If a designer needs a much more accurate 

result, there are many options.  The fixed-point version could use a longer format, for 

example 40 bits or more instead of the 32 bit format used here.  One could also scale 
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values much more aggressively to squeeze out as much accuracy as possible.  The 

issue with more aggressive scaling is that as mentioned previously, each time you 

introduce a new scaling operation you introduce more operations, and so as always 

there must exist a trade-off between performance and accuracy.  

In this study, we will accept the results as shown in Table II and Table III, and 

continue forward to further customize by designing now a customized processor core 

for this new fixed-point GFM implementation.  By doing this, the goal is to combine 

the efficiency found from the fixed-point conversion with more efficiency introduced 

by customizing hardware, for a much higher overall efficiency for the system.  In the 

next section we begin the process of designing a custom core by using the 

information from this and previous sections to define a design a new instruction set 

architecture.  

Low-Level Application Profiling (Fixed-Point)Low-Level Application Profiling (Fixed-Point)

Since we now want to use a fixed-point implementation of the algorithm, we 

need to again profile that implementation.  This was done again on the Simplescalar 

simulator and results are presented in figures 31-35.  This configuration yielded a CPI 

of 0.54 and a cycle count of 19711 cycles per time-step.  Note that we expect the 

time-step to be more than the first Simplescalar configuration because in this 

configuration we are no longer using floating-point hardware.  

It is interesting to note that as shown in Figure 31, the instruction class profile 
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is completely different from the floating-point hardware version.  Since there are no 

floating-point instructions used, we now see 62% of instructions are integer 

computations (compared to 39%), about 13% are branches (compared to 9%), and 

load and store operations make up about 25% of instructions (compared to 29%). 

More integer computation is of course expected, and increased numbers in other 

categories is as well, since the floating-point instructions are removed.  

Figure 31: Instruction class profile from Simplescalar profiling results
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Figure 32: Branch Instruction profile from Simplescalar profiling results
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Figure 33: Instruction profile from Simplescalar profiling results
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Figure 34: Addressing mode profile from Simplescalar profiling results
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Figure 35: LD/ST address segment profile profiling results from Simplescalar
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The branch instruction profile is very similar, however, the addressing mode, 

instruction, and load/store instruction profiles are different.  If we compare the 

instruction profile in Figure 28 to Figure 33, we see that in the fixed-point version, of 

course all the single-precision floating-point instructions are missing (such as mul.s, 

sub.s, add.s), and the percentage of integer addition instructions is higher.  The fixed 

point version code also uses many more addressing modes (compare Figures 29 and 

34).  It is not exactly clear why this is, but we can say that because the 

implementation is different, there may have been optimizations that could be 

performed more easily by the compiler using more addressing modes with the fixed-

point implementation.  

Finally, we see that the load/store profile is different as well (Figures 30 and 

35).  In the floating-point version there are almost 100% of memory accesses use the 

data segment, and virtually no stack usage, whereas in the fixed-point version, almost 

70% of memory usage utilizes the stack and the remaining usage is mostly from the 

data segment.  This most likely has to do with the fact that the fixed-point version 

code needs to call fixed point routines to do arithmetic, whereas the floating-point 

version code does not.  This is expected and gives insight into the memory structure 

design that will be explained in a following section.  

What is also interesting is the specific instruction frequency plot given in 

Figure 36.  This is a plot of which instructions executed how many times per step, 
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averaged over many time-steps.  Very interesting is that for the most part, instructions 

are evenly distributed, but at one point there is a spike.  This is an indicator that some 

instructions execute much more often than others, and that there may be an 

opportunity for acceleration in hardware.  In fact upon inspection at the 

corresponding addresses in the Simplescalar PISA assembly code, it was found that 

the spike in Figure 36 in fact corresponds to the integer division routine, and that 

these 49 instructions represented less than 2% of the code, but the program spent 27% 

of the time executing those instructions (as a group).  In the next section we will see 

how implementing a hardware integer division module further accelerated the code.  

Figure 36: Specific instruction frequency per time-step
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Instruction Set Architecture DesignInstruction Set Architecture Design

When the GFM algorithm is run on a 16-bit, non-pipelined, in-order, mostly 

RISC instruction set microprocessor, it requires 227,000 cycles per step when running 

the floating-point version of GFM.  With am ARM7 core that has a 3-stage pipeline, 

we expect at least a reduction to at least 1/3 of that number, and in fact it is less, at 

about 45,000 cycles per step.  When converted to a fixed-point implementation, we 

see additional efficiency where the cycle count is about 20,000 cycles per step for 

Simplescalar, and roughly 15,000 cycles for an ARM7 core.  Using this information, 

and the profiling information from the previous sections, we now can make some 

decisions on what a custom architecture should include, with the first step being 

defining the instruction set architecture.    

We know that a pipelined architecture is favorable, since even with only a 3-

stage architecture in the ARM7 we see a factor of 5 decrease in the number of cycles. 

Of course we can also reach this conclusion simply by referring back to Chapter 1 

and taking note of how computationally intensive and repetitive the algorithm is. 

What that points to is the need for some sort of mechanism to provide more 

parallelism, and a pipelined architecture is a good choice.  Now, given that we are 

going to choose a pipelined processor, we then would want to use a RISC-like ISA, 

since RISC type ISAs lend themselves well to pipelining given the simple nature of 

the instructions.  How many stages in the pipeline are needed will become clear in the 

next section, but for now we will focus on instructions.  
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Basic Instructions

We will be using a fixed-point implementation based on the results presented in 

the previous sections.  On a basic level we will certainly need arithmetic operations 

like add, subtract, multiply and divide.  These will be based on 32-bit instructions, 32-

bit data, and 32, 32-bit registers.  Arithmetic operations will only be able to operate 

on register data, so data need to be loaded into general-purpose registers first.  In fact 

the arithmetic operations in this design were combined into one instruction called 

ALU, and the specific operation will be designated by an operation code.  

We will use a load-store architecture, so we will need load and store operations. 

Because we know the GFM algorithm runs a lot of operations from within loops, and 

operates on array data, we will include indexed load and store instructions, as well as 

explicitly addressed.  In fact, since there is a high amount of load and store 

operations, we will use load and store operations that can load and store 2 data values 

at a time.  These operations are called LOAD2 and STORE2, and LDIX2 and STRX2 

for indexed addressing versions.  

Loop Instructions

Given the large amount of processing done in loops, the design presented here 

includes hardware loop support.  This means that within the instruction set, there are 

instructions to set a loop counter, and perform a combined test and branch operation. 

These instructions are called LDINDX and WHILE.  LDINDX (“load index”) is used 



123

to load the start and end index of a loop counter, and “while” is used to test the loop 

counter, increment it, and branch if needed.  The LDLPCTR instruction is used to 

load the loop counter into a register, for use in the program.  The WHILE instruction 

is used to convert C-code for loops to a “do-while” type structure in assembly.  All 

loops in the implementation are written in effect as do-while loops.  As we will see in 

the next section, these instructions correspond to custom hardware loop registers, but 

these are unaccessible otherwise except via these instructions.  

Control Instructions

In addition to hardware loop support, a special c-code like if statement is 

implemented.  This instruction is called IF_CMP, and works by specifying two 

registers to compare, the operation used to compare, and an offset used for calculating 

the branch target if the condition is true.  The condition is tested in hardware 

automatically, without explicit operations such as separate compare and then branch-

if-equal (or similar) instructions.  Although the basic instructions are RISC-based, 

these control instructions, along with the loop instructions make the design more like 

a CISC machine. In this way this design is more of a hybrid architecture than purely 

RISC or CISC.  There is also a JUMP instruction to explicitly jump to some address, 

for example for use in an if-else type structure.  
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Special Instructions

In addition to the above instruction types, there are a few special instructions. 

One called RTorPRED, tells the processor which memory space will be operated on. 

What this refers to is that when we need to run predictions, as was explained in 

Chapter 1, memory from the real-time state variables needs to be copied, and the 

time-steps then need to be run on the copied values, so as not to disrupt the real-time 

state.  What the instruction actually does will be explained in the next section, but for 

now we can say that it tells the memory system which memory space is being used. 

In addition we have a related instruction called MEM_COPY.  This instruction tells 

the hardware to start copying real-time data to the prediction memory space.  

Instruction Set Details

Table IV gives details of the custom instructions created for the custom GFM 

processor.  Note that there are 4 different instruction formats.  The number of 

instruction formats corresponds to the complexity of the instruction decoding scheme, 

so in general it is desired to reduce the number of type of instructions.  The first type 

(Type 1) used by ALU, and RTorPRED, uses an opcode, then 9  bits unused, 

followed by 2 5-bit source register addresses in the case of ALU (or unused in the 

other instructions), a 5-bit destination register address (or unused), followed by 4 its 

used differently for each instruction.  
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TABLE IV: Custom 32-Bit Instruction Set

OpCode (4) Detail (28)
Type 1

ALU N/U(9) RS1(5) RS2(5) RD(5) OP(3),N/U(1)
RTorPRED N/U(9) N/U(5) N/U(5) N/U(5) N/U(2), 

RTorPRED(2)
Type 2

LOAD2 ADDR1(9) RD1(5) ADDR2(9) RD2(5)
STORE2 ADDR1(9) RD1(5) ADDR2(9) RD2(5)

Type 3
JUMP OFF(15) N/U(5) N/U(5) N/U(3)

IF_CMP OFF(15) R1(5) R2(5) OP(3)
LDLPCTR N/U(15) RD(5) N/U(1),N/U(4) N/U(3)
LDINDX LPSTRT(8),

N/U(7)
LPMAX(8) N/U(1) N/U(4)

WHILE OFF(15) LPMAX(8) N/U(1) N/U(4)
Type 4

LDIX2(4) ADDR1(9) ADDR2(9) RD1(5) N/U(2) ONEORTWO(3)
STRX2(4) ADDR1(9) ADDR2(9) RD1(5) N/U(2) ONEORTWO(3)

LDIX1m1(4) ADDR1(9) N/U(9) RD1(5) N/U(2) N/U(3)
Table IV: custom 32-bit instruction set for customized processor core

ALU uses the last 4 bits to include the specific ALU operation code (indicating either 

add, sub, mul, or div), and RTorPRED uses the bits to indicate which memory space 

to use (real-time or prediction).  

The second category (Type 2) is the load/store group including instructions 

LOAD2 and STORE2.  The format is simple and includes two sets of 

addresses/register pairs.  For LOAD2, the addressed are the addressed in memory 

from where data is read, and the register addresses are where they should be written. 

For STORE2, the addresses are where the data read from the registers should be 

written to.  Note that the addresses are 9-bits, so this limits the memory space to 512 
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32-bit values, and the registers are limited to 32 addresses.  Considering the 

prediction memory space as well, this amounts to a maximum of 4KB of memory that 

can be addresses using these instruction formats.  

Type 3 instructions are control and loop instructions. JUMP uses a 15-bit offset 

where the first bit is used to indicate whether the jump is forward or backward.   This 

amounts to allowing up to a jump of 16KB in either positive or negative direction. 

Considering that we have 32-bit instructions, this allows for jumps to branch forward 

or backward no more than 4096 instructions.  In fact the total number of custom 

assembly code instructions for the GFM routine is only about 320 so this is more than 

enough.  The IF_CMP instruction also uses this same type of jumping mechanism, 

except that it also includes the addresses of two registers to compare, and an 

operation code for what type of comparison is to be performed.  There are 4 types 

implemented, if-less-than, if-greater-than, if-equal-to, and if-not-equal-to.  If the 

register values being compared satisfy the condition indicated, the jump is taken 

corresponding to the 14-bit offset specified.  

LDINDX is used at the start of a for-loop type c-code structure, in order to load 

the start and end loop indices.  LPSTRT and LPMAX are the starting and ending 

indices, respectively.  Most of the overhead associated with loops is removed due to 

the internal loop registers and automatic loop increment and test.  As was mentioned 

previously, in this way these instructions allow a c-code style for-loop to be de-

constructed and re-written as a do-while structure.  For example, the GFM algorithm 
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contains a few loops in the form below: 

for(int nx = 0; nx < NUM_CELLS; nx++)
{

// ...
}

This structure is re-written in the custom assembly as follows: 

# prepare index for loop
OP_LDINDX 0 21 LOOP1
LP1: OP_NOP
OP_WHILE LP1 21 LOOP1

Note the use of the “NOP” instruction.  The “NOP” is a commonly used instruction to 

indicate “no operation”, and the hardware simply allows the processor to run but 

without doing any specific operation.  These can be used to insert so-called stalls in 

the pipeline where necessary.  In the case above, it is simply used as a placeholder for 

the loop.  Note that the label “LP1” is the branch target for the WHILE instruction. 

The LDINDX instruction loads the loop index once, and the WHILE instruction loops 

back to the label LP1 on each iteration.  When the loop is complete, the condition 

tested by WHILE does not result in a branch, and the next instruction after WHILE is 

loaded.  Typically the for-loop structure written in assembly includes first loading the 

initial loop counter value, then a comparison operation is done after loading the 

current loop counter value and the reference value, then a branch is either taken or not 

taken.  This customization allows for hardware to perform the comparison 

immediately when the WHILE instruction is loaded, and the result is processed in the 

first stage, thereby reducing the number of operations needed for the loop comparison 

to 1 , as well as the number of stages needed to 1.  The result is that the loop 



128

condition is tested and processed within 1 cycle, as opposed to multiple cycles for a 

standard loop compare and branch operation.  Hardware for 2 levels of loops was 

initially supported, although in this custom implementation of GFM only 1 is used, 

since inner loops are optimized by a compilation technique called unrolling, used to 

increase efficiency in the pipeline, and to more aggressively parallelize operations.  

Type 4 instructions include indexed instructions.  The index used to load or 

store values is in fact the loop counter, and this optimization has to do with the fact 

that GFM processes a lot of values from within c-code arrays.  Arrays inherently use 

indexed values since arrays are simply a collection of data values in memory that are 

contiguous.  For LDIX2 and STRX2, the addresses needed to load or store 2 values 

are specified, as well as the loop number (referring to the inner or outer loop), and the 

number of values to load or store (one or two).  If one value is specified, the second 

set of data is simply ignored.  One optimization made here is that only one register is 

specified, and the second register address required (for a double load/store operation) 

is assumed to be the next register address.  This is useful for example when loading or 

storing two consecutive array values.  This also depends on how the assembly code is 

written, but happens enough in GFM that this optimization is useful.  A specific 

example is given in Figure 37, where the original c-code is given first, and the 

resulting assembly code follows.  Note that registers R4 and the inferred register R5 

are used to load and store values.  The structure shown allows the loop to load, store, 

then compare and branch in only 3 cycles, although when pipelined the operations 
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take an equivalent of less than 1 cycle per loop because of the way the pipeline 

overlaps instructions between loop iterations and pipeline stages.  The LDIXm1 

instruction was an optimization added that allows you to load a value not base on the 

loop counter value, but based on that value minus 1.  This is present in the c-code 

implementation of GFM, and because the loop counter is held in a special register, it 

was simple enough to add another register that always holds 1 less than the loop 

counter for the special load instruction.  This reduces the number of cycles needed to 

load and then decrement the loop counter value before using it. 

// c-code
for(int nx = 0; nx < NUM_CELLS; nx++)
{

poldold[nx] = pold[nx];
pold[nx] = p[nx];

}

# custom assembly code
OP_LDINDX 0 21 LOOP1
LP1: OP_LDIX2 pold p R4 [i] 2
OP_STRX2 poldold pold R4 [i] 2
OP_WHILE LP1 21 LOOP1

Figure 37: Conversion from c-code for-loop to custom assembly
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Processor Core Architecture DesignProcessor Core Architecture Design

The ISA design given in the last section of course assumes or infers something 

about the physical architecture, and the architecture has to assume something about 

the ISA.  The concept for the physical core was to provide a 5-stage pipeline designed 

for instruction level parallelism (ILP), but by reducing the number of instructions and 

providing customized instructions for one specific application to reduce complexity in 

hardware.  If we simply used a 5-stage pipeline machine like MIPS, there would be a 

lot of overhead designed into the system that is unneeded when running the GFM 

algorithm.  Choices to reduce complexity are mainly to reduce area and power in the 

resulting design.  Having more instructions, more addressing modes, and more 

complicated structures built in to the system means more circuits are drawing power 

from the supply (unless specifically turned off), and possibly longer transport times as 

signals go through the system from input to output.  

The basic pipeline described in this section is based on the basic MIPS design, 

where the first stage is instruction fetch, followed by instruction decode, followed by 

execution and address calculation, followed by memory access, and finally write 

back.  The difference of course, between this design and MIPS, is that instructions 

have been customized, load and store operations can load and store 2 values at a time, 

and where some instructions are more CISC like than RISC.  The customized loop 

and control instructions are not present in MIPS, and RTorPRED is customized for 

this design.  In addition, to achieve a higher performance, the integer division 
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operation is handled in hardware rather than in software.  

Architecture

Starting with the top-most level view of the device, the GFM custom processor 

looks like as shown in Figure 38.  There are 9 pins to interface to the device.  Because 

the device was designed and simulated using Xilinx FPGA tools, and because the 

device chosen requires a clock input of greater than 2 MHz, the signal CLOCK is 

used to input a clock signal to the device.  The ENABLE signal is a global enable, 

used to enable or disable major blocks within the device, in order to conserve power. 

The signals SS, MOSI, MISO, and SCLK are used to communicate with the device 

using an SPI module interface, designed into the device.  DCMLOCK is a signal used 

to indicate when the internal clock is stabilized.  The internal digital clock module 

(DCM) takes the input clock signal CLOCK and divides it for a faster clock.  The 

input signal STEP is used to tell the device to start another GFM time-step 

computation, and the RDY signal indicates that the computation is complete and 

ready to compute again.  

Figure 39 shows the next inner level device schematic.  Note the external 

signals connecting to 3 main components.  The top-most component is the DCM. 

The bottom left is the SPI and the bottom right is called the datapath.  The datapath 

includes all the memory, ALU, and control components and interface signals that 

make up most of the system.  The SPI has a few lines connecting to the datapath 

because the SPI interfaces with system memory.  The SPI is very simple and basically 
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contains one command, which allows the outside world to input pressure and time 

data to the GFM algorithm for processing.  The datapath is much more complex, and 

will explained further in the following section.  Note that figure 38 is analogous to 

how the custom GFM processor would look as a physical custom IC.  

Figure 38: Top level device schematic
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The Datapath

Figure 4 shows a conceptual rendering of the custom processor datapath. 

Notice the pipeline stages and related pipeline registers S2, S3, S4, and S5.  In the 

bottom left corner you will notice the hardware loop support registers and related 

adders and subtractors.  In the upper left corner you see the program counter (PC), 

and related MUX and adders.  Note how most data flows from left to right, but that 

some is forwarded back through the pipeline from stages 4-5 to stages 3, 4, and 5.  As 

was mentioned previously, this is a technique used to avoid data and control hazards. 

Figure 39: Second level device schematic
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The ALU in the 3rd stage is shown as a simple ALU, but note that it includes a 

hardware division module that can stall the entire pipeline while in progress.  MUX 

M2 is used to select between sending the next instruction, or a NOP instruction to 

stall the pipeline.  Notice that the ALU, RAM, and register file (RF) all require 

MUXes to select between input data that come from either pipeline registers 

(originally from data read or calculated in earlier stages), forwarded from later 

pipeline stages, or sent from special calculation ALUs (like loop register 

calculations).  In this pipeline design, the entire instruction is forwarded through each 

stage, starting from stage 1 when it is read from ROM.  Note that the instruction 

Figure 40: Custom GFM Processor Datapath 
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registers (IR) acts as the stage 1 pipeline register.  

Note that there are some components not shown in the figure.  For example, the 

controller that handles all the MUXes, memory enable and read/write signals, and 

other logic associated with the datapath.  The controller can access all components 

including the pipeline registers, ALU, memory, and MUX select signals.  The 

controller is a very important portion of the design to point out because it implements 

the control corresponding to the custom ISA.  As was mentioned previously, there is 

some logic associated with the division module and stalling the pipeline.  In this case, 

there is a signal called FREEZE, as opposed to stall, named so because when a 

division operation is detected and begins, the entire pipeline is frozen until the 

operation is complete.  

Memory

The memory system is relatively simple.  There is one memory used for 

program code (ROM), and one for random access memory (RAM).  The RAM 

memory is special in that it is split between real-time and prediction memory from 

with the same block memory.  The real-time memory is the memory used in 

calculation of the real-time state of the algorithm, and the prediction memory is used 

to perform the same operations, but on a copy of the real-time state variables in order 

to predict future values of the real-time variables.  Since the design is pipelined, the 

memory copy can be done in software efficiently by loading and storing pairs of data. 
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The ALU

In implementations like those using ARM processors, MSP430, and many other 

fixed-point hardware processors, division is handled in software.  Whereas 

multiplication, addition, and subtraction are handled with simple fixed-point 

hardware, division is not as simple, and requires software routines to carry out the 

operation.  For example, given the fixed-point c-code implementation of GFM, when 

compiling the program using an IAR commercial strength compiler using an 

ARM7TDMI as the target, the fixed-point division routine requires roughly 80 cycles 

to complete each division operation, averaged over 100 calls to the division routine. 

This is with some optimizations turned off so that the compiler does not remove the 

arbitrary operation done simply to profile the operation.  For this reason, in this 

design the ALU was designed so that division is handled in hardware, with a minimal 

number of cycles.  There exist many binary division algorithms, and the Wikipedia 

article on different methods is a good place to start.  The implementation here uses 

the simplistic and intuitive, iterative, shift-and-subtract method as given in Figure 32 

as a c-code implementation, taken from [42].  

Note that this implementation is given only as a conceptual implementation, 

since, this design implements this algorithm in hardware.  The assembly programmer 

using this design needs only to specify a division ALU operation, and the hardware 

with iterate through the steps shown to arrive at the result.  Note further that the 

method requires 32 iterations of the loop, as well as some additional operations to 
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deal with the results.  Extra operations are needed since this routine handles unsigned 

division, but we use it for signed, fixed-point division for Q2(18.14) formatted 

numbers.  What happens is, when a division ALU operation is detected, the operands 

are loaded into the appropriate ALU registers, and the processor ticks along until the 

operation completes, halting the pipeline during the computation, and outputting the 

result using the standard ALU output upon completion.  

Handling the division operation in hardware reduces the reported near 320 to 

385 basic RISC instructions, to one, and with a 5-stage pipeline, that amounts to 

roughly 60 to 80 effective cycles reduced down to around 35.  This is a huge 

reduction considering how many division operations are performed over the course of 

a standard dive, and over the life of a dive computer product.  Energy is also reduced 

of course, since less cycles means less time the processor is running and thus less 

energy dissipated.  
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The Serial Peripheral Interface

The SPI is a simple interface designed to allow data to be input and output from 

the custom processor from the main system processor.  The data format is most 

significant bit first, where the first byte is the number of bytes to be sent.  Data is 

clocked into the SPI receive buffer on each rising clock edge, when the slave-select 

pin in low (SS=0).  When SS=1, the byte is complete, and this is repeated until all 

bytes are received (when the number of bytes received equals the value of the data in 

the first byte).  There is one command implemented currently which is the write data 

command.  The master processor uses this command to send the pressure and time 

data to the slave GFM processor.  The number of bytes is sent first (8), then the 

command (0x00), then 4 bytes for the 32-bit value to be written and finally 2 bytes 

for the address to write to.  After the data is written to the slave processor, the master 

unsigned divlu(unsigned x, unsigned y, unsigned z)
{

// divides unsigned (x || y) by z
int I; 
unsigned t;
for(i = 1; i <= 32; i++)
{

t = (int)x >> 31;    // all 1's if x(31) = 1
x = (x << 1) | (y >> 31);  // shift (x || y) left
y = y << 1;    // one bit
if((x | t) >= z) 
{

x = x – z;
y = y + 1;

}
}
return y;    // remainder is x

}
Figure 41: Conceptual division algorithm written in c-code
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raises the STEP line to start a GFM time-step calculation.  

Figure 42 shows 8 bytes being received by the SPI module.  Notice how the data is 

shifted into the “curbyte_rx” variable, representing the current byte being received. 

Also notice the variable “numbytes_rx” as it counts up on each byte received.  Lastly, 

notice how the STEP signal is raised after the data is sent.  This starts the GFM time-

step routine immediately after receiving the new pressure data.  Currently you cannot 

read out from the device to the master, but the implementation would be similar.  

Figure 42: SPI Data Transfer
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Implementation CharacteristicsImplementation Characteristics

The custom processor architecture described in previous sections was 

implemented in VHDL for a Xilinx FPGA target.  The specific device used was the 

3s200vq100-4, chosen for its gate capacity and built-in block memory.  The 

implementation synthesis results are given in Figure 43, and the maximum frequency 

allowed was reported as 22.5MHz.   The cycle count per step for the custom 

processor ranges from 4949 cycles for the non-gas forming portion of a dive to 6421 

for the gas forming portion of a dive.  On a particular dive to 180ft for 3 minutes, the 

average cycle count was 5175.  Recall that the exact cycle count depends on what 

phase the program is in and so this has to be taken into consideration.  Also note that 

synthesis results depend on the specific design goals chosen in the synthesis tool, and 

it is noted here that the design was simulated with a design goal of optimizing for area 

and minimum power rather than for speed. In fact a maximum frequency of 22.5MHz 

is perfectly suitable for a low-power application such as a dive computer, as long as 

the performance, power, and area constraints are met.   
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Custom Tools (The Assembler, and Manual Compilation)Custom Tools (The Assembler, and Manual Compilation)

It should be mentioned that throughout this project as part of the 

hardware/software design flow, custom tools needed to be developed in order to 

complete the design.  This section will describe the custom assembler used to 

implement the custom processor program code.  The assembler is used to convert 

assembly code to machine code.  The machine code output is in the form of 32-bit 

words used to initialize the ROM of the FPGA target for program code.  Since there 

is no compiler for the custom processor, all high-level c-code for the custom 

implementation was hand-assembled into custom assembly, and the assembler was 

used to convert to machine code for use by the processor.  

The assembler is a simple program, written in Java, that essentially parses the 

assembly program and converts the instructions into machine code.  There are a few 

Selected Device : 3s200vq100-4 

 Number of Slices:                     1059  out of   1920    55%  
 Number of Slice Flip Flops:           1277  out of   3840    33%  
 Number of 4 input LUTs:               1846  out of   3840    48%  
 Number used as logic:                 1756
 Number used as Shift registers:         90
 Number of IOs:                           9
 Number of bonded IOBs:                   6  out of     63     9%  
 IOB Flip Flops:                          1
 Number of BRAMs:                         4  out of     12    33%  
 Number of MULT18X18s:                    4  out of     12    33%  
 Number of GCLKs:                         5  out of      8    62%  
 Number of DCMs:                          1  out of      4    25%  
Figure 43: Synthesis Results for Custom Processor on Xilinx 3s200vq100-4 Device
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components needed by the assembler.  First, there is an input file called a symbol 

table, that contains the names of all variables in memory, along with their 

corresponding number of 32-bit words each variable takes up in memory.  The order 

of the entries in the symbol table is important because they are assigned consecutive 

addresses by the assembler, starting with address zero.  The assembler first reads the 

symbol table, and stores the names and addresses in a table.  It then reads all labels 

found in the program, and stores the names and program line addresses corresponding 

to each label.  The assembler also contains values of each machine code instruction 

and contains code that can calculate addresses used in jumps, and branches.  

To complete the assembly process, the program reads each line of the assembly 

program code, and parses out each value.  For each instruction, the values found on 

each line of code are parsed and addresses are calculated, variables are found in the 

symbol table, and all values are converted to binary numbers.  All values are then 

concatenated into one 32-bit instruction of machine code, and output to a new file. 

There is also an output log that shows the conversion results for each line, along with 

all variables found in the symbol table, and any errors that occurred.  The output 

machine code is simply a file of 32-bit instructions, one per line, and that data is used 

to initialize the ROM in the VHDL design of the custom processor.  

As an example of program code conversion from high level c-code, to 

assembly, and finally to machine code, in Figure 44 is a simple selection of code from 

the GFM program.  Note that since the if-compare instruction was implemented in the 
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ISA, the comparison and if-statement from c-code is implemented with only 2 

instructions, plus the branch target with the label “IF1”.  The value of p[nx] in this 

case is assumed to be in register R24.  The entire fixed-point c-code program was 

converted in this way, and the entire resulting machine-code program was then 

written into the ROM initialization in the VHDL code for the custom processor in 

order to run the program.  

One more note should made here on the topic of compilation techniques.  Since 

the assembler for the custom architecture was created with the use of a compiler, it is 

noted that compilation techniques to produce efficient assembly code were done 

manually.  This is important because any efficient use of a processor that runs from 

program code needs to have the code produced efficiently and correctly, and some 

techniques can improve performance drastically when correctly implemented.  For 

example, the IAR compiler tools that are used with TI MSP430 Family processors, 

// C-code
if(p[nx] < fpZERO)
{

p[nx] = fpZERO;
}

// assembly code
OP_IF_CMP IF1 R24 RZERO LT
OP_STRX2 p NOADDR RZERO 1
IF1: OP_NOP

// machine code
11010000000000000101100011110000
01110000011111111111111111001001
00000000000000000000000000000000
Figure 44: High-level c-code conversion to assembly and custom machine code 
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ARM processors, and others, uses several common techniques when, for example, 

optimizing for speed.  One such technique is called loop unrolling, and is particularly 

useful with pipelined designs.  An illustration of a few compilation techniques can be 

aided with the following code segment, from the original floating-point version of the 

algorithm code: 

The code involves setting the 168 array variable q values given the current value of 

variables q, pold, poldold, beta, and delt.  There is one outer loop that executes 21 

times and one inner loop that executes 8 times. Now, the first optimization one can 

notice is that the values for pold and poldold are independent of the inner loop, that is, 

they are constant throughout each iteration of the inner loop, and they can therefore 

be taken outside of the inner loop.    In fact, in this program beta, and delt, are 

constants, and so each beta[ns]*delt can be pre-calculated and taken out of the loop as 

well (this is also called “common subexpression elimination” because the calculation 

is unnecessarily repeated if left unoptimized).  

Another observation is made that for the inner loop, there is no inter-loop 

dependence. In other words, regarding loop variable ns, the calculation for q[1][nx] 

for(int nx = 0; nx < 21; nx++) {
for(int ns = 0; ns < 8; ns++) {

q[ns][nx] = (q[ns][nx] + pold[nx] - poldold[nx]) -
(beta[ns] * delt * q[ns][nx]);

}
}
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does not depend in any way on the calculation of q[0][nx], and so goes for all values 

of ns.  This means the inner loop can be in fact “unrolled”, or in other words, the 

iteration of the loop calculation is unnecessary, and any convenient or efficient 

ordering of calculating each individual value q[ns][--] can be done within each outer 

loop iteration.  To illustrate this, suppose we pre-calculate all values of pold[nx]-

poldold[nx] as the first operation on each “nx” loop.  We then calculate all values of 

(beta[ns] * delt * q[ns][nx]) for all values of ns, and unroll the final calculation for q. 

The code might look as below: 

Now, in assembly, there is even one more optimization that can take place, 

which is that if the common operations are interleaved across inner loop iterations, 

this can lend itself well to making full use of the pipeline.  For example, because we 

know the inner loop iterations are independent, and we plan to unroll them, we can 

for(int nx = 0; nx < 21; nx++) {
tmp1 = pold[nx] – poldold[nx];
tmp2 = (beta0delt * q[0][nx]);
tmp3 = (beta1delt * q[1][nx]);
 ... 
tmp9 = (beta7delt * q[7][nx]);
// --------------------------------
q[0][nx] = (q[0][nx] + tmp1 – tmp2;
q[1][nx] = (q[1][nx] + tmp1 – tmp3;
 ... 
q[7][nx] = (q[7][nx] + tmp1 – tmp9;

}
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also split up their respective operations and run them in any order we choose.  In 

other words, it may be smarter to code all the q[0][nx] + tmp1 operations together 

in order of ns, as opposed to completely finishing the calculation for each ns first. 

This can be said for all the operations needed so that instead of ordering all ns=0 

operations first, then ns=1, and so on, instead, all q+tmp1 operations are run, then all 

(q+tmp1-tmp<ns+2>), and so on.  For a pipelined design, this grouping of similar 

operations allows the pipeline to process each operation (for example addition) in a 

minimum average number of cycles, because of the way the pipeline works.  For 

example, in the custom assembly there is a section of code that corresponds to this 

loop described here that reads: 

The example code above shows additional operations that correspond to interleaved 

operations from the unrolled inner loop, and each is processed in 1 effective cycle 

because they can be easily pipelined.  It is only be careful inspection and manual 

compilation that resulted in the code being programmed this way, taking advantage of 

knowledge of the specific hardware.  This and similar techniques is normally the 

OP_ALU NOADDR R13 R3 R21 ADD # R21=q[0][nx] + (tmp1)
OP_ALU NOADDR R14 R3 R22 ADD # R22=q[1][nx] + (tmp1)
OP_ALU NOADDR R15 R3 R23 ADD # R23=q[2][nx] + (tmp1)
OP_ALU NOADDR R16 R3 R24 ADD # R24=q[3][nx] + (tmp1)
OP_ALU NOADDR R17 R3 R25 ADD # R25=q[4][nx] + (tmp1)
OP_ALU NOADDR R18 R3 R26 ADD # R26=q[5][nx] + (tmp1)
OP_ALU NOADDR R19 R3 R27 ADD # R27=q[6][nx] + (tmp1)
OP_ALU NOADDR R20 R3 R28 ADD # R28=q[7][nx] + (tmp1) 
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function of the compiler, but in this case this was done manually.  

Low-Level Application Profiling (Fixed-Point, Custom Hardware)Low-Level Application Profiling (Fixed-Point, Custom Hardware)

At this point we want to see the final profiling results from the custom 

processor core run using the GFM time-step routine as the benchmark.  We have 

already seen the results on various targets including the MSP430 16-bit processor, 

various ARM core processors, and Simplescalar.  We expect the design here to allow 

for a relatively low cycle count per step meeting the design constraints, but also with 

a smaller area and gate count than Simplescalar and possible ARM as well.  A lower 

cycle count and smaller area design would point to a more energy efficient design, 

since energy is a function of power and time.  Reducing the cycle count amounts to 

reducing the amount of time the processor spends processing actively on, and 

reducing the gate count and area amounts to reducing the number of transistors on, 

and so the current and power is reduced as well.  

TABLE V: Custom Core Design Speedup

Processor Floating-Point
Cycles / Step

Fixed-Point
Cycles / Step

Custom Processor
Speedup % versus

Float. Pt. / Fixed Pt.
Custom -- 5175 -- --

MSP430 (16-bit) 227000 1871129 97.7 99.7
Simplescalar -- 19711 -- 73.7
ARM7TDMI 45007 15272 88.5 66.1
ARM9TDMI 43071 13133 88.0 60.6

ARM10E 41271 13133 87.5 60.6
XScale 41271 13133 87.5 60.6

CortexM1 80496 33856 93.6 84.7
ARM1136J 45100 13133 88.5 60.6

Table V: Custom processor core speedup compared to various other architectures.  
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Table V shows the cycle count from the custom processor core versus other 

processor targets, along with the speedup %.  Note that each processor corresponds to 

a cycle count for the the floating-point version program code, and fixed-point version 

program.  The speedup percentage compares each program version on the various 

targets, versus the custom implementation.  Remember that the Simplescalar 

simulator simulates floating-point hardware, whereas all other targets listed are fixed-

point machines.  The point is that we can compare the fixed-point implementation 

from Simplescalar but we cannot compare the floating-point version, since the 

compiler ported for Simplescalar cannot simulate floating point in software, only in 

hardware.  Under speedup %, the left column represents the speedup considering the 

conversion from floating- to fixed-point, as well as the custom hardware design.  In 

other words, the left-column under speedup compares the floating-point program 

running on various targets compared to the fixed-point version running on the custom 

processor.  The right column compares only the fixed-point implementation running 

on various targets compared to the same running on the custom processor. 

Considering the custom hardware only, we see a speedup of between 60 and 84% (not 

including the MSP430).  Considering both hardware and software design 

optimizations, we see speedup of between 88 and 93% (again not including the 

MSP430).  

It is important to look also at the instruction profile for the custom architecture. 
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Figure 45 shows the percentage each instruction is called per time-step, while running 

a 180ft dive for 3 minutes.  Because the custom assembly code includes a lot of NOP 

instructions, in fact the largest percentage of executed instructions are NOPs.  After 

that, we see multiplication and subtraction, followed by LOAD2 and then addition, 

making up 50% of instructions.  Indexed load and store take up 11%, and WHILE 

instructions make up 2%.  Division is now only 1% of instructions, but recall that 

division is the only multi-cycle instruction and so it takes more time than others and 

is not pipelined.  

Note that in earlier plots like in Figure 32, the instruction profile in fact closely 

matches the amount of time or cycles spent for each instruction, since all instructions 

are pipelined and each is fetched roughly 1 cycle after the previous instruction.  In 

this case though, the division instruction breaks up this homogeneity.  Figure 46 is a 

Figure 45: Instruction Profile (Custom Hardware)
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more representative plot where the multi-cycle division instruction is taken into 

account.  The plot more accurately shows how much time is spent executing each 

instruction per time-step.  In Figure 46, the most time is spent in the division 

instruction, and the NOPs are a less significant percentage.  The rest of the 

percentages follow similarly as in the previous figure.  

It is interesting to note also that the total combination of load/store instructions 

makes up only 15% of cycles.  Arithmetic instructions in total make up 63% of 

cycles.  Control instructions like WHILE, IF_CMP, and LDLPCTR and LDINDX 

makeup 3%, and the remaining instructions are NOPs.  This points to the custom 

CISC-based hybrid load/store design being very suitable for the application, since a 

small percentage of time is spent on high energy load/store instructions, and most 

instructions are pipelined arithmetic instructions for which the design is well-suited. 

The NOPs are a side-effect of making the pipeline design less complicated, since the 

need for them is a result of not having appropriate mechanisms in hardware to deal 

with certain dependencies.  On the other hand, a compiler or even assembler design 

can include the needed NOPs easily, without requiring that they be explicitly written 

into the program by the programmer.  For this study, the NOPs required were written 

into assembly as needed.  One such example is before and after a division instruction, 

NOPs are needed to be sure the pipeline is flushed before the division operation 

starts.  This causes division to require 40 cycles – an acceptable number considering 

it is handled in hardware, but it is noted here that this could be improved.  
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Figure 46: Instruction profile (Based on cycles; Custom Hardware)

35%

19%
13%

8%

7%

7%
4% 3%2%1%1%0%0%0%

Instruction Profile (Cycles)

ALU_DIV
NOP
ALU_MUL
ALU_SUB
LOAD2
ALU_ADD
LDIX2

STRX2
WHILE
IF_CMP
STORE2
LDIXm1
LDLPCTR
LDINDX



152

Chapter 6: Results

To begin to look at the results of this study, we need to summarize what was 

done, what was expected, and finally what resulted from the customized processor 

core design and software optimizations.  This section will cover performance, power 

and area constraints, and how the custom design addressed these needs.  The last 

section will deal with real examples of how this new design could be used in a 

practical product design, and what it would mean for the implementation.  

Results: Power ConstraintsResults: Power Constraints

Recall that in Chapter 1 we defined the needs of the application, and in 

particular design constraints 3 and 4.  Constraint 3 specifies that the instantaneous 

current should be such that a coin-cell battery such as the Sony CR2430 could be 

used to power the device.  Constraint 4 specifies that the life of the product must be a 

minimum of 1 year considering a certain usage profile of one 30-minute dive per day. 

To arrive at specific power consumption for the custom device, however, we have to 

keep in mind that the design was completed on an FPGA using FPGA design tools. 

FPGA tools can estimate power but in a dive computer system, FPGAs typically use 

too much power to be considered for in-application use.  On the other hand, there are 

some low-power flash-based FPGA devices that, while expensive, could be used for a 

real design.  That being said, we will report here the power estimation results as given 

in the Xilinx Power Analyzer software.
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The first set of results is the power analysis organized by type, shown in Figure 

47.   What is shown are power figures in Watts (W), for the various component types 

in the design.  Also shown is the power broken up into quiescent power and dynamic 

power.  For this design, we are more concerned with dynamic power since the 

quiescent power of an FPGA is much higher than an ASIC, and the two cannot be 

compared accurately.  Notice that the total dynamic power is 40mW, but the DCM is 

the main contributor at 34mW.  The logic, signals, BRAMs, and MULTs are the most 

important component types here.    

Figure 47: Xilinx Power Analysis by Type; Run @ 6MHz
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In figure 48 we see how the entire datapath component (which includes ram, 

rom, register file, ALU, controller, and virtually everything in the design besides the 

SPI and clock manager) amounts to only 4mW of dynamic power.  The main 

contributor here is the ALU, which makes sense given our understanding of the 

architecture, the instruction profile, and the device usage.  Data is transferred only 

every 6 seconds, and in between transfers, the device is computing thousands of 

values using the ALU.  At a voltage of 1.2V, the total current draw is 32.5mA, and 

the 4mW coming from the datapath (not including th clock manager) amounts to 

3.3mA.  For constraint 3, although we are estimating what the result would be for an 

ASIC, even with the power draw given for the FPGA the constraint could be met.  

For constraint 4, we note that using equation 4 with TSPM=2611*10 (1 real-

time step and 2611 prediction steps per 6s), 30 minutes of dive time corresponds to 

783,300 time-steps.  The  783,300 time-steps at 6MHz amounts to 11.23 minutes of 

Figure 48: Xilinx Power Analysis by Hierarchy; Run @ 6MHz
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calculation (see Table VI).  Given a battery with a 220mAh capacity, and considering 

the 4mA from the datapath, the battery would last 293 days.  This is not considering 

the clock manager, but the analysis is still worthwhile.   If the device is fabricated 

using a technology such that it matches the 0.21mW/MHz at 1.8V that the 

ARM7TDMI exhibits, then the device would draw 0.47mA on average at 6 MHz and 

would last over 3.6 years given one 30 minute dive per day.  Of course whether or not 

the design can achieve the same power rating as another existing device depends on 

many factors, but the calculations are given here for reference.  

Results: Area ConstraintsResults: Area Constraints

Converting from gate counts on an FPGA implementation to equivalent gate 

counts in an ASIC is not simple, and in fact many say that there is no real way to do it 

accurately.  One reason is that FPGAs contain routing and other logic not present in 

ASIC designs, and any conversion is not equivalent inherently.  Also, ASIC design 

depend on specific cell libraries and libraries for memories and other components that 

cannot be accurately estimated from FPGA results.  Since the custom GFM processor 

design was synthesized using FPGA tools, the best we can do is a very rough estimate 

for gate count, for use comparing to other fabricated IC designs.  Making this more 

complicated is the fact the FPGA design tools have various so-called design goals 

that allow the designer to specify whether the design should be optimized for power, 

area, or speed.  Xilinx used to output a value of “equivalent logic gates” after 
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synthesis of a design, but they have since removed this feature in latest versions of the 

Xilinx ISE software.  The only way to get a true gate count as would be found in an 

ASIC, is to use an ASIC synthesis tool such as those made by Synopsis.  That being 

said, we wish to arrive at least at a rough estimate of transistor count in order to 

compare to other designs.  

As was reported in Figure 43, the design uses roughly 55% of the available 

slices in the 200k gate 3s200 device.  As mentioned in the Xilinx app note [43], the 

designer of an FPGA needs to realize that gate counts or estimates for designs made 

using FPGA tools depend very much on how well the design matches the architecture 

of the FPGA.  In Xilinx terminology and specifically for the Spartan 3 architecture, 

one CLB equals 4 slices.  Figure 49 gives a representation of the architecture of a 

Spartan 3 FPGA [44].  The architecture is relatively simple, consisting of 

“configurable logic blocks” (CLBs), Digital Clock Managers (DCMs), I/O Blocks 

(IOBs), some Block Ram, and a few multipliers.  

From the Spartan 3 datasheet [44], the total “Equivalent logic cells” equals 

“total CLBs” x (8 logic cells / CLB) x 1.125 effectiveness.  One “logic cell” equals 

one 4-input lookup table plus a “D” flip-flop.  Also one CLB equals 4 “slices”. 

Calculating 55% used out of the total number of slices gives 1056 slices used, which 

means 264 CLBs.  The 264 CLBs equates to 2376 logic cells.  On the other hand, 

since numbers are given in Figure 43 for the number of flops and LUTs used from 

within the slices, a more accurate number may be to use those numbers, reported as 
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1277 flops and 1846 4-input LUTs used.  

To convert from number of “D” flops to number of transistors, we can use the 

number 26 as given in [45].  The transistor count then is roughly 33k considering 

flops only.  The app note [43] explains that converting LUTs to number of gates is 

difficult since LUTs can be used for different purposes.  The gate count per LUT is 

listed as between 1 and 9.  For the sake of this study we will use 6 gates (roughly 24 

transistors) per LUT, and so the 1846 LUTs amount to roughly 44k transistors, 

bringing the total now to 77k.  Transistor counts for memory are typically not 

included in processor core comparisons, so the 4kb of RAM used in this design is 

Figure 49: Xilinx Spartan 3 Architecture 
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noted, but not included in area estimation, especially since it is a relatively small 

memory size that surely will not be a factor even in watch-style design.    The design 

does use 4 of the dedicated multipliers available, and so these need to be accounted 

for.  The author is using an estimate of 2200 gates required for each 18x18 signed 

multiplier, taken from an article on EE Times.  Using 4 transistors per gate the 4 

multipliers make up 35k transistors, making out total 112k transistors, not including 

memory.  

Now, considering that an ARM7 is given [46] as using 2.2 sq. mm, and 74k 

transistors, and an ARM9 is 4.15 sq. mm and 112k transistors (using 0.35um 

technology), this design using 112k transistors (estimated) is quite a good result, and 

in fact we can say here that this would meet the constraint in terms of area.  Related 

to area is power and energy, and so we want to expand on how area affects energy. 

As we saw in Table V, this design amounts to 66% and 60% speedup when compared 

to ARM7 and ARM9 respectively.  The estimated transistor count for this custom 

design amounts to a 51% increase in area for the ARM7 and 0% increase for the 

ARM9.  Table VI shows how the ARM7, ARM9, and the custom design compare in 

terms of transistor count, cycle count, and energy.  Energy here is an estimated 

relative measure that uses cycles as runtime, and transistor count as a rough measure 

of power; given as the multiplication of the two values and then normalized for the 

ARM9 architecture.  The last column gives percent change in energy for the custom 

design versus the other two.  
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TABLE VI: Transistor Counts and Energy, Custom vs. ARM7/9

Processor Cycles 
/ Step

# Transistors
(core only) Energy Normalized 

Energy
% Change

Energy
Custom 5175 112k 580 0.39 --

ARM7TDMI 15272 74k 1130 0.77 -48.67
ARM9TDMI 13133 112k 1470 1.00 -60.54
Table VI: Transistor Counts and Speedup, Custom vs. ARM7/9 

It is noted that this method used in this section for estimating gate counts and 

energy is not very accurate, but does give a rough sense of where the custom design 

falls in comparison to the other architectures.  The area constraint for this design was 

given by Constraint 5, and it stated that the design should be able to fit within a 12 sq. 

mm area.  Since the ARM9 is quoted as requiring only 4 sq. mm, and because our 

transistor count estimate is exactly the same as for the ARM9, we can conclude that 

we should be able to meet this constraint with the same or more advanced technology 

node.  Another rough validation (without requiring complex area estimation 

techniques) is to note that since the design already meets the constraint as designed 

(and using only a fraction of the device resources) in the 100-pin VQ100 package 

Xilinx device used in the study, it would surely meet the constraint if fabricated into 

an ASIC.  
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Results: Performance ConstraintsResults: Performance Constraints

Recall that in Chapter 1 we defined the needs of the application, and in 

particular design constraint 2b.  Constraint 2b requires that the time per GFM time-

step be less than 1.149ms in duration.  Recall that this was designed such that the 7 

predictions and 1 real-time time-step as specified in Chapter 1 could be completed 

within 6 seconds, at 50% duty.  This is a hard real-time bound that takes into account 

a real-time operating system that takes advantage of low-power processor states. 

Note also that this is essentially equivalent to a processor being able to complete 2611 

time-steps within 3s at 100% duty (active on 100% of the time).  It was also noted 

that in order to calculate the amount of time required by the implementation to 

complete 1 time-step, the operating frequency, and cycle count per step needs to be 

known.  

TABLE VII: Time Per Step vs. Frequency

Processor Cycles / 
Step

TPS @ 
2MHz (ms)

TPS @ 
4MHz (ms)

TPS @ 
6MHz (ms)

TPS @ 
8MHz (ms)

Custom 5175 2.59 1.29 0.86 0.65
ARM7TDMI 15272 7.64 3.82 2.55 1.91
ARM9TDMI 13133 6.57 3.28 2.19 1.64
Table VII: Time per step at various system frequencies.  Fixed-point implementation.  

To be able to determine whether this design meets Constraint 2b, Table VII 

gives the time per step at various frequencies, for the custom design as well as ARM7 

and ARM9 target architectures.  It is important to note that although Table V gives 

cycle counts and % speedup, that is not enough to determine whether a hard real-time 
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bound can be met.  Only by calculating at specific frequencies can we understand the 

practical impact of the custom design, or other designs for that matter.  What we see 

is that for frequencies of 8MHz and below, the only architecture that can meet the 

performance constraint is the custom architecture.  In fact, the custom design meets 

the constraint at any frequency above 4.5MHz.  Table VII is important because the 

higher the system frequency the higher the current, and in an ultra-low power design 

such as a dive computer the coin-cell batteries used may not be able to provide 

enough battery life for the application.  The challenge is to implement the design in a 

low-power technology so that its full potential as a performance efficient processor 

for GFM can be realized.  

As an example battery life calculation, suppose a diver makes one, 60-minute 

dive per day.  As is given for the ARM7TDMI architecture performance 

characteristics [46], suppose the processor consumes 1.5mW/MHz at 3V for a 0.35um 

process.  Now suppose a coin-cell battery with a 220mAh rating.  Note that the 60-

minute dive requires (60min)*(2611*10 steps/min), or  1,566,600 GFM time-steps. 

These time-steps would require 66.58 minutes to complete.  Of course this cannot be 

done since the dive is inly 60 minutes long, as this is expected since we know the 

ARM7 cannot meet the constraint.  On the other hand, if we can assume that given 

some process technology that the custom design has the same power rating, then the 

GFM calculations would take 22.45 minutes to complete, and at 6MHz, drawing an 

average of 1.12mA at 3V, the device would last about 6.5 months - very reasonable 
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considering that the advanced GFM algorithm would be running in real-time.  

Results: Summary ExampleResults: Summary Example

Suppose we now have constructed a watch-style high-end dive computer 

(similar to the Oceanic OC1), and that the design includes a custom GFM processor. 

The main system program has been modified to use the GFM algorithm, and as 

explained in Chapter 1, sends and receives data to and from the GFM chip every 6 

seconds.  In between those 6 seconds, the GFM chip runs the real-time calculation, as 

well as the 7 predictions as described in Chapter 1, for use in calculating the NO-D 

time and the result of a safety stop.  

Because the processor was custom designed, its performance is very high.  It 

runs GFM time-steps in roughly 5175 cycles, and assuming we run the system at 

8MHz, each time-step only takes 650us.  As reported in Table V, this amounts to 

66%, 61%, and 74% speedup as compared to the same fixed-point algorithm code 

version running on an ARM7, ARM9, and Simplescalar implementation, 

respectively.  Since we want to run most of the time in a low-power state, we run at 

50% duty, and so we run only as many time-steps per second as will take ½ second to 

complete.  In this case, we run 769 steps per half-second, and we are in a low-power 

state the other half-second.  Every 6 seconds then, we have the ability to run 4615 

GFM time-steps, while only active at high frequency half the time.  Recall that to be 

able to run all 7 predictions including the ascent with a safety stop every 6 seconds, it 
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was required that 2611 time-steps were completed within 6 seconds at 50% duty, and 

so this is easily accomplished.  In fact, if we only want to run 2611 steps, we need 

only to be running calculations 28.2% of the time.  

It is important to note also that the 7 predictions outlined in Chapter 1 are not 

mandatory.  These predictions were chosen as a very aggressive goal, and one that 

would allow the product to calculate in real-time the effectiveness of a safety stop as 

well as perform enough calculations needed to find the NO-D time.  As was 

mentioned in a previous section, if the product designer wished to do say only 3 

predictions for use in finding the NO-D time, and instead using more cycles to do 

other predictions or not use them at all, that is up to the designer.  In fact for that 

matter, the 50% duty cycle is not a strict requirement either, and a designer can 

choose to set the amount of “active/on” time at 10% for longer battery life. This is 

entirely up to the designer and the custom architecture gives the product designer the 

freedom to choose, because of the increased efficiency the custom architecture 

provides.  The point is that because the architecture was designed with such 

aggressive goals, the performance is so high that many more options exist in terms of 

real practical product implementations.  

Because of the low transistor count as reported in the second section of this 

chapter, and given the simulation power analysis and interpretation in the first section 

of this chapter, we can say that the device would in fact fit within a low-profile, 

battery operated watch-style design and form factor, and the design is estimated to be 
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able to meet or exceeds the 1.5mW/MHz @ 3V rating given for the ARM7TDMI 

device fabricated using 0.35um technology.  The efficiency in terms of cycle count 

has implications related to power.  Given 1.5mW/MHz @ 3V, we can say we use 

12mW @ 8MHz @ 3V, or 4mA @  8 MHz @ 3V.  Running 28.2% of the time at 

8MHz and at 3V means that the average current would be 1.13mA.  Given a 300mAh 

battery such as the CR2430, the device would last 265 hours running continuously. 

Considering typical usage of 1, 30-minute dive per day, the device would last 531 

days or 1.5 years.  

To summarize this example, a a high-end watch style dive computer device 

could be designed using this custom processor design, using a coin-cell CR2430 

battery, that could last over 1 year.  This device would be running the GFM algorithm 

in real-time, used to calculate the no-decompression time via 6 prediction 

calculations, as well as 1 prediction made to show the efficacy of a standard safety 

stop, within the real-time bounds of 6s indicated by the GFM inventors.   Running at 

only 28% duty, there is room for additional or supplemental predictions, and room for 

other options in terms of calculating GFM-based outputs.  For example, a PDC 

designer might choose to use only 3 predictions for calculating the NO-D time, and to 

use the remaining cycles available to calculate the effect of three different safety 

stops, or maybe reduced or increased ascent/descent rates.  This additional capability 

afforded by the custom design allows the designer freedom to utilize GFM in a dive 

computer in a way that would not be possible otherwise, using off-the-shelf 
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components.  Of course there are devices that are powerful enough to compute GFM 

time-steps in a small number of cycles, but to compete with this custom design they 

would need to be able to do it at a low frequency and at low power as well.  

On the other end of the spectrum, this time considering a less demanding 

application, the custom design could be used to run calculations for a very simple 

device as well, with equally useful benefits.  Suppose a dive computer manufacturer 

wishes to build a low-end computer.  The low-end computer might use a larger 

battery (since the overall shape is larger and possibly even hand-held), and might 

have less demanding need for GFM predictions.  In this case, the custom processor 

still affords the same efficiency running GFM calculations, and the designer has the 

freedom to choose either a lower frequency, or change the duty cycle while still 

meeting the long battery life requirements of the product.  Since the number of time-

steps is reduced for the less demanding application, there is room to reduce the 

system frequency while still meeting the real-time requirements.  

In terms of manufacturing, as in the past, fabricating your own custom IC is an 

expensive endeavor.  Typical costs can be in the millions of dollars, and for a small 

company like a dive computer manufacturer this can be prohibitive.  On the other 

hand, there are several alternatives.  One is to have a so-called “Structured ASIC” 

manufactured.  This essentially amounts to programming the top layer of an 

otherwise pre-determined silicon die with a custom design, such that the cost of 

creating this custom IC is much lower than a full custom IC.  For example, one 
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company called eASIC quoted (on 3/28/08) their software at $30k (NRE), and the 

cost for 1,000 prototypes at $14,950 ($14.95 each).  This is relatively expensive 

compared to GPP tools, but magnitudes less than a full ASIC design cost.  The 

benefit is that you get custom IC's at costs much lower than FPGAs, and almost 

comparable to GPPs, but with the high efficiency and low area and power that the 

custom design provides.  

Another option for implementation is a low-power flash-based FPGA.  These 

are quite expensive devices compared to GPPs, but require no fabrication, and have 

very good power and area characteristics.  For example, the Actel Igloo Nano series 

AGLN250 FPGAs have up to 250k system gates, 36k bits of RAM, and exhibit a 

typical 24uW power draw.  The quiescent current is 34uA at 1.5V, and 1.8uA in sleep 

mode.  The methodology is quite complicated to calculate dynamic power, but 

essentially amounts to figuring out what resources are being used, and summing up 

all the power from each.  Of course the power used depends on device utilization and 

the frequency and amount of switching.  The device comes in various packages 

including a 100-pin QFP package that would easily fit inside even the most 

demanding watch-style designs.  These devices sell for under $20 in quantities of 

100+, and design software is relatively inexpensive, even coming with a free 1 year 

license.  
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Results: Overall SummaryResults: Overall Summary

The Gas Formation Model scuba diving algorithm and its related target 

application of a low-power, small footprint, battery-operated and safety critical scuba 

dive computer was detailed in Chapter 1.  Constraints for such a design were detailed 

in terms of performance, area, and power.  In Chapter 2, sources of CMOS power 

were discussed and common low energy hardware design techniques were presented. 

Chapter 3 presented characteristics and trade-offs for existing implementation options 

for implementing the GFM algorithm in a dive computer system, and Chapter 4 

discussed the concept of a hardware/software design flow, in particular, required to 

design a custom  processor for implementing GFM.  

Chapter 5 detailed how an in-order, pipelined, 32-bit, custom hybrid 

architecture processor was designed for implementing GFM inside dive computer. 

Important steps such as hardware/software partitioning, high- and low-level 

application profiling, floating-point to fixed-point conversion, instruction set 

architecture (ISA) design, processor core architecture design, custom functional unit 

(CFU) design and toolset design were detailed as they related to the design flow.  The 

design included a floating-point to fixed-point algorithm conversion, followed by a 

manual compilation into assembly code for the custom architecture.  Chapter 6 

presents the results of the design, again in terms of performance, area, and power. 

The efficient design exhibits an instruction profile that uses only 15% of cycles for 

load/store operations, and the majority (63%) of operations performed are pipelined 
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arithmetic instructions.  The custom design meets the real-time performance 

requirements at any frequency above 4.5MHz, and outperforms the popular ARM7 

architecture by a factor of 3, exhibiting a speedup of 66%, and has been estimated to 

be able to meet the power and area requirements of the application as well.  

Given a practical design example, the conceptual device was shown to be able 

to last over 1.5 years on a 3V coin-cell battery with 300mAh capacity, given a 

particular usage profile.  Additional practical design options were given in order to 

allow the designer to take full advantage of the GFM algorithm, while still meeting 

various design constraints for more or less demanding applications.  Finally, three 

real implementation options for the custom design were discussed.  This custom 

design was shown to have promise as a real product in industry, and work is ongoing 

to create its first prototype working within a real dive computer system.  
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