
DESIGN OF AN APPLICATION-SPECIFIC INSTRUCTION PROCESSOR
FOR THE GFM SCUBA DIVING ALGORITHM

A thesis submitted to the faculty of
San Francisco State University

In partial fulfillment of
The Requirements for

The Degree

Master of Science
In

Engineering: Embedded Electrical and Computer Systems

by

Edward S Pataky

San Francisco, California

December, 2009

Copyright by
Edward S Pataky

2009

CERTIFICATION OF APPROVAL

I certify that I have read DESIGN OF AN APPLICATION-SPECIFIC INSTRUCTION

PROCESSOR FOR THE GFM SCUBA DIVING ALGORITHM by Edward S Pataky,

and that in my opinion, this work meets the criteria for approving a thesis submitted in

partial fulfillment of the requirements for the degree: Master of Science In Engineering:

Embedded Electrical and Computer Systems at San Francisco State University.

 Hamid Mahmoodi
 Assistant Professor of Electrical Engineering

 Hamid Shahnasser
 Professor of Electrical Engineering

DESIGN OF AN APPLICATION-SPECIFIC INSTRUCTION PROCESSOR
FOR THE GFM SCUBA DIVING ALGORITHM

Edward S Pataky
San Francisco, California

2009

Abstract: The recently patented Gas Formation Model scuba diving decompression

algorithm presents a challenge in terms of practical design for ultra-low-power

battery-operated scuba dive computer applications. In its original form, it requires

thousands of floating-point calculations to be completed within hard real-time

bounds, in order to calculate the diffusion and convection of nitrogen gas in the

human body. Combining software optimization techniques with a customized

processor core design, this study presents the first attempt to design custom hardware

for GFM in order to reduce the energy and area footprint of the processor required,

while at the same time meeting aggressive performance goals. The resulting design

outperforms ARM9 and ARM7 devices by roughly a factor of 2.5 to 3, amounting to

60%-66% speedup, respectively, with a reasonable gate count and meeting the

specifications given in the study.

I certify that the Abstract is a correct representation of the content of this thesis.

__ ______________
 Chair, Thesis Committee Date

ACKNOWLEDGEMENT

This research on efficient hardware design options for the GFM algorithm was done in

conjunction with work done on the algorithm itself and its prototype hardware system

implementation as an embedded systems design engineer at Pelagic Pressure Systems in

San Leandro, CA. The author would like to give special thanks to Pelagic Pressure

Systems, and to Dr. Hamid Mahmoodi of San Francisco State University for help and

support of this work.

v

TABLE OF CONTENTS

List of Tables...x

List of Figures...xi

Chapter 1: The Application..1

Scuba Diving - Introduction..1

Definition of Terms...5

How GFM Works..6

GFM Example – Real-Time FGV Calculation...9

GFM Example – Prediction Calculations...11

Dive Computer Systems (General)...15

A GFM Dive Computer System..16

C-Code Implementation of the GFM Algorithm ...19

A Simulation-Only Implementation Structure...21

A True Real-Time Implementation Structure...23

A Set of Visual Aids for GFM..28

Standard Set of Dive Profiles..31

Design Constraints for a GFM Dive Computer..36

Performance Constraints..36

Power Constraints...41

vi

Area Footprint Constraints...43

Chapter 2: Low-Energy Hardware Design ...45

Sources Of Energy in CMOS Circuits..45

Techniques to Reduce Dynamic Energy Consumption..48

Chapter 3: Implementation Options and Trade-Offs...54

Custom Hardware Implementations and ASICs...56

Application Specific Instruction Processors (ASIPs)...59

Domain Specific and Digital Signal Processors (DSSPs, DSPs)..................................62

General Purpose Processors (GPPs)..63

Processor Architectures...65

Processor Architectures - RISC and Pipelining..66

Processor Architectures - CISC..68

Processor Architectures – VLIW..69

Processor Architectures – DSP...69

Fetch Order, Cache, and Order of Execution...71

Floating-Point to Fixed-Point Conversion..72

Numeric Representations..72

Conversion..76

Chapter 4: Hardware/Software Co-Design and Design Flows..81

ASIP Design Flow...81

Chapter 5: Optimizing Hardware for GFM...85

Summary...85

vii

High-Level Application Profiling (Floating-Point)..86

HW/SW Partitioning...98

Low-Level Application Profiling (Floating-Point)...100

Floating-Point to Fixed-Point Conversion Results...109

Low-Level Application Profiling (Fixed-Point)...115

Instruction Set Architecture Design..121

Basic Instructions...122

Loop Instructions..122

Control Instructions..123

Special Instructions..124

Instruction Set Details..124

Processor Core Architecture Design...130

Architecture..131

The Datapath..133

Memory..135

The ALU...136

The Serial Peripheral Interface...138

Implementation Characteristics...140

Custom Tools (The Assembler, and Manual Compilation)..141

Low-Level Application Profiling (Fixed-Point, Custom Hardware)..........................147

Chapter 6: Results..152

Results: Power Constraints...152

viii

Results: Area Constraints..155

Results: Performance Constraints...160

Results: Summary Example..162

Results: Overall Summary..167

References..169

ix

LIST OF TABLES

Table I: Simplescalar Configuration..102

Table II: Fixed vs. Floating-Point Speedup...110

TABLE III: Fixed-Point Accuracy, FO2=21%..112

TABLE IV: Custom 32-Bit Instruction Set...125

TABLE V: Custom Core Design Speedup..147

TABLE VI: Transistor Counts and Energy, Custom vs. ARM7/9..................................159

TABLE VII: Time Per Step vs. Frequency..160

x

LIST OF FIGURES

Figure 1: GFM Free Gas Predictions (conceptual)..7

Figure 2: GFM Routine Execution (conceptual)..10

Figure 3: Prediction Calculations (conceptual)..13

Figure 4: Pseudo-code for a simulation-only implementation of GFM.............................23

Figure 5: Pseudo-code for a real-time implementation of GFM..25

Figure 6: Time-step and prediction relation with real time...28

Figure 7: A dive profile for a simple dive: 100ft bottom depth, bottom time BT=t2-t1,

ascent/descent rates (AR/DR) in fpm. Note that bottom time for a simple dive includes

the time starting from the descent from 0ft (surface). ...29

Figure 8: A dive profile for a simple dive with a safety stop. The safety stop is 3 minutes

at 15ft...29

Figure 9: Free gas generation from two different future ascent scenarios (1) and (2)

calculated at time t1...30

Figure 10: GFM time-step computation every 6s during dive...30

Figure 11: No decompression limit (NDL) calculation concept from points (t1,g1), ... ,

(t3,g3). Note that the times t1, t2, t3 refer to the time of ascent associated with resulting

free gas volumes g1,g2,g3, and the NDL is the ascent time when the resulting free gas

volume exceeds Vcrit. ..31

Figure 12: Abstraction Level vs. Power Savings...50

xi

Figure 13: Processor HW Implementation Options...55

Figure 14: HW/SW Co-Design Flow...82

Figure 15: Instruction Profiling Results, 21% FO2, 180ft...89

Figure 16: Instruction Profiling Results, 21% FO2, 140ft...89

Figure 17: Instruction Profiling Results, 21% FO2, 100ft...90

Figure 18: Instruction Profiling Results, 21% FO2, 60ft...90

Figure 19: Instruction Profiling Results, 21% FO2, 40ft...90

Figure 20: Instruction Profiling Results, 20% FO2, 180ft...91

Figure 21: Instruction Profiling Results, 30% FO2, 140ft...91

Figure 22: Instruction Profiling Results, 30% FO2, 100ft...92

Figure 23: Instruction Profiling Results, 30% FO2, 60ft...92

Figure 24: Instruction Profiling Results, 30% FO2, 40ft...93

Figure 25: GFM-based dive computer system concept ..99

Figure 26: Instruction class profile from Simplescalar profiling results.........................105

Figure 27: Branch Instruction profile from Simplescalar profiling results......................106

Figure 28: Instruction profile from Simplescalar profiling results..................................106

Figure 29: Addressing mode profile from Simplescalar profiling results.......................107

Figure 30: LD/ST address segment profile profiling results from Simplescalar.............107

Figure 31: Instruction class profile from Simplescalar profiling results.........................116

Figure 32: Branch Instruction profile from Simplescalar profiling results......................117

Figure 33: Instruction profile from Simplescalar profiling results..................................117

Figure 34: Addressing mode profile from Simplescalar profiling results.......................118

xii

Figure 35: LD/ST address segment profile profiling results from Simplescalar.............118

Figure 36: Specific instruction frequency per time-step..120

Figure 37: Conversion from c-code for-loop to custom assembly..................................129

Figure 38: Top level device schematic..132

Figure 39: Second level device schematic...133

Figure 40: Custom GFM Processor Datapath ...134

Figure 41: Conceptual division algorithm written in c-code...138

Figure 42: SPI Data Transfer...139

Figure 43: Synthesis Results for Custom Processor on Xilinx 3s200vq100-4 Device....141

Figure 44: High-level c-code conversion to assembly and custom machine code143

Figure 45: Instruction Profile (Custom Hardware)..149

Figure 46: Instruction profile (Based on cycles; Custom Hardware)..............................151

Figure 47: Xilinx Power Analysis by Type; Run @ 6MHz...153

Figure 48: Xilinx Power Analysis by Hierarchy; Run @ 6MHz.....................................154

Figure 49: Xilinx Spartan 3 Architecture ..157

xiii

1

Chapter 1: The Application

Scuba Diving - IntroductionScuba Diving - Introduction

Scuba diving is a sport that involves diving underwater while breathing a

particular mixture of pressurized gas. Some divers stay at shallow depths (less than

30 ft) for relatively short times (less than 20 minutes), while others dive to relatively

deep depths for considerably longer times. Many so-called “recreational divers”

engage in this activity simply for pleasure, while other divers dive as part of their job,

or for military purposes. The term “technical diver” refers to divers that dive to great

depths, for example inside underwater caves, and follow particular scheduled stops

for safety as they ascend to the surface. There are many types of diving and types of

divers, but one thing modern divers have in common in recent years is the use of a so-

called “dive computer”, which will be explained later in this paper. For now we will

use the definition of a dive computer being a device used by scuba divers in order to

keep track of the state of the gas in the diver's body, and to otherwise provide a safe

path to the surface at all times under any situation.

When a diver is under water, as the surrounding ambient pressure on the diver's

body increases at depth, the higher concentrations of oxygen and nitrogen molecules

in the breathing mixture diffuse into the blood and tissues of the diver's body, and as

the diver surfaces, they go in the reverse direction, always seeking an equilibrium

state. To understand this more fully, we can consider the Ideal Gas Law [24] from

2

basic chemistry. The law states that the pressure (p) times the volume (V) of an ideal

gas is equal to the number of moles of gas (n) times the Universal Gas Constant (R)

times the temperature (T) in Kelvin.

This is more simply stated as given in equations (1) and (2).

pV = nRT Equation 1

n = pV / RT Equation 2

When a diver goes underwater to some depth, the weight of the water above the

diver contributes to an increased pressure on the diver, proportional to depth.

Considering the same (or only slightly different) temperature, and that the average

volume in the diver's lungs does not change, we can see from Equation 2 that since

V/RT is constant, and p is increasing, the only conclusion is that (n) is also

increasing. In other words, when a diver is at depth, there is an increased number of

moles of gas in the diver's lungs. To say there is an increased number of moles of gas

in an unchanging volume (the lungs) means that there is a higher concentration of

that gas in that volume. That gas could be any number of mixtures commonly used

for diving, but for simplicity let us consider that common air (roughly 21% Oxygen

and 79% Nitrogen) is used. The measure of concentration used in the diving industry

is called the “partial pressure”, denoted PPX (where X denotes the gas, ie... PPO2),

and is calculated as in Equation 3.

PPX = Abs. Pressure * % Gas X in mixture Equation 3

3

For example, at 6 bar of absolute pressure, in normal air, the partial pressure of

Oxygen, termed PPO2, is 1.26 bar absolute, and for Nitrogen (PPN2) is 4.74 bar

absolute. Note that there are certain known safety limits for example on PPO2 levels,

where breaching those limits can cause maladies such as oxygen toxicity .

The diver's lungs have an increased concentration of gas at depth and we note

that the diver's blood and tissues initially do not. If the diver stays at depth for any

amount of time, the gas in the lungs with higher concentrations of oxygen and

nitrogen will start to dissolve into the the surrounding blood and tissues in the diver's

body. Eventually if the diver stays at the same depth for a long enough time, the

concentrations in the lungs and in the blood and tissues of the body will be equalized.

The different parts of the body have different characteristics of solubility and

diffusivity that govern how quickly this occurs, but it occur nevertheless. In other

words, a diver that stays at depth for some significant amount of time has an

increased concentration of oxygen and nitrogen in their blood and tissues.

The second part to this story is that when the diver surfaces or otherwise

ascends to an area of lesser surrounding ambient pressure, the higher concentrations

of gas that are in the blood and tissues of the diver's body now come “out of solution”

and are exhaled through the lungs. A danger exists when excess nitrogen is coming

out of solution as the ambient pressure decreases, whereby if the diver is not careful it

can come out too quickly and form free gas in the body, and the diver can get

decompression sickness (DCS) [1]-[4]. DCS is commonly referred to as “the bends”,

4

and can be severely painful, and can be fatal. The cause of DCS is believed by many

as having to do with free nitrogen gas forming in the body[1][3]. Various theories[1]

[3][4] suggest differences in terms of when, where, how, and in what form the free

gas develops, but the general belief is that in fact it is this free nitrogen gas that

causes it. As far as the recently patented Gas Formation Model (GFM)[1] is

concerned, it is precisely that free gas that causes DCS and GFM actually calculates

in real-time when and under what conditions fee gas will form, as well as precisely

how much is formed.

One function of a scuba diving computer [4] is to compute the amount of time a

diver can stay at the depth before surfacing would result in the diver getting sick. The

Gas Formation Model calculates the diffusion of nitrogen gas into and out of the

blood and tissues in the body and through he lungs, and the precise time that nitrogen

gas layers break and allow nitrogen to be free in the body. The amount of free gas

volume (FGV) is calculated and correlated to the percent probability of getting DCS.

An important function, then, of a GFM-based dive computer is to use the GFM

algorithm to calculate the amount of free gas in the body, and to predict the future

free gas volume (given various future dive profiles), in order to give the diver a safe

path to the surface, under any situation. In addition to these predictive calculations,

GFM also can be used to give a quantitative measure of free gas in the body in real-

time.

5

Note that GFM is truly a real-time algorithm, in that it uses ambient pressure as

well as real physiological input parameters to calculate real quantities of free gas in

the diver's body in real-time. This FGV calculation is a novel approach to the design

of a dive computer, and exactly how intensive the algorithm is and what is required to

implement it efficiently in hardware is the subject of this thesis. This study represents

the first such attempt to explore a custom hardware design for GFM.

Definition of TermsDefinition of Terms

Before we continue, a brief definition of terms used in this paper is in order,

and so the concepts of an “immediate ascent”, “future prediction”, and a “dive

profile” will be defined here. A “dive profile” is a loose term for a set of points,

(time, depth), for which we require a calculation of free gas. Note that the dive

profile is typically expressed not in (time, depth) form, but in the sentence form

“<depth> ft for <time> minutes”. For example, suppose a a diver has descended to a

depth of 100ft, and has been there for 5 minutes. Then suppose the diver ascends to

the surface where he stays for 10 minutes. The dive profile in this case is then “100 ft

for 5 minutes, then 0 ft for 10 minutes”. Dive profiles are used to describe the input

vectors for the GFM algorithm and its application, and they form the basis of how

GFM is tested and analyzed.

A “future prediction” in this paper will be used to refer to the calculation of free

gas, as calculated by GFM, corresponding to the set of (time,depth) inputs for a

6

particular future dive profile. These predictions are calculated exactly the same way

as the real-time state of the algorithm is calculated, only that prior to execution, a

copy of the algorithm state is made and prediction calculations are executed only on

the copied data, so as to not affect the real-time state calculation. We will use the

term “immediate ascent” (IA) prediction for a special type of future prediction where

the dive profile is such that the diver is assumed to immediately ascend to the surface.

This is as opposed to assuming the diver stops at some intermediate depth(s), or stays

at the current depth for any amount of time.

How GFM WorksHow GFM Works

To understand how GFM works, we will carefully review the representation in

Figure 1. Figure 1 shows two plots with Depth on the bottom half and FGV on the

top half, with the x-axis representing time. The bottom half depicts a dive profile (as

defined previously). Suppose the maximum depth is 100ft as in the figure, and at

time t1 the diver surfaces. The free gas computation corresponding to that dive

profile will have some maximum peak value shown as Max1 at some time t1'.

Suppose, the diver stayed at 100ft for another 5 minutes until time t2 (t1 + 5 minutes).

For the longer dive there might be a larger peak value of FGV (depending on the

circumstance), and the maximum value might be Max2 (> Max1) at time t2'. Now if

we consider that a diver is in fact at 100ft at time t1, and these two future dive

profiles with corresponding peak FGVs are calculated as predictions while the diver

7

is at depth, we start to understand how GFM works. In this way GFM can be used

not only to calculate the real-time FGV in the diver's body, but also and more

importantly, the FGV that would result given certain future dive profiles.

The last piece of the puzzle is to find the time-to-decompression or no-

decompression time remaining, important outputs of any modern dive computer. To

do that using GFM, the points (t1', Max1), (t2', Max2), … (tn', MaxN) can be used to

predict the time when the peak FGV will breach a certain critical value, shown as

Vcrit in the figure. If you had unlimited computational capacity you could run an

unlimited number of FGV predictions and pinpoint the NO-D time without much

effort, but in reality only a limited number of predictions can be run. In fact, in the

simplest case you could simply run one IA prediction and simply report when the

time arrives at which an IA to the surface would breach the critical value. The simple

approach (not making use of GFM utilize its prediction capability) would provide an

accurate real-time result, however without much warning to the diver. How many

Figure 1: GFM Free Gas Predictions (conceptual)

8

predictions need to be run to give ample warning to the diver depends on the system

design and trade-offs in how accurate the system needs to be, and how much time and

power can be spent on computation. In an application such as a top-of-the-line dive

computer, it may be required to provide a warning well in advance for multiple future

dive profile scenarios. In other applications that are not as time-critical or safety-

critical, the last minute update may be sufficient. In the past, some divers relied on

their own hand calculations and tables of pre-calculated values for safe dive times and

decompression schedules, but modern dive computers are so advanced that many

divers now rely solely on the information they provide for their safety. This thesis

will consider the case of a safety-critical, real-time, high-end dive computer where the

most accurate and fastest possible response time is most desirable.

We can note here that the GFM patent describes the GFM algorithm very well

in terms of its formulation, background and concepts, input and output parameters, as

well as a detailed listing of the main algorithm routine written in high level code.

That document will be referenced here, and the remaining sections will assume some

familiarity with the detailed information provided in that document. Note also that

for the purposes of this thesis, we are not as much interested in how the algorithm

was developed, or in comparisons to other similar algorithms or validation of GFM

itself, rather, we will assume its validity and focus instead on the use and performance

of the algorithm. In addition, the subject matter of this paper will focus more on how

to achieve the highest or otherwise most suitable performance of the GFM algorithm

9

running inside a modern, low-power, battery operated dive computer.

GFM Example – Real-Time FGV CalculationGFM Example – Real-Time FGV Calculation

To really drive home the meaning of the concepts in the previous section, let's

first follow a more detailed example of the simplest case of GFM's in-application use.

What we want to consider here is what GFM calculates, and when it calculates it, in

order to keep track of the real-time FGV in the diver's body. At the simplest level,

this is the basic piece of information every GFM application needs in order to

function. Additional predictions can be performed, but only if the real-time state is

and has been calculating from the start of the dive or (set of dives if more than one

dive).

Let's assume then that a diver (let's call him John) has just arrived at a location

where he plans to make a dive and he is on the surface, at 0 FT of depth. We will

further assume that John's body has had enough time to equalize and otherwise adjust

to the altitude he is at, and that this is the first dive of the day, and there are no

previous dives even the day before. This information is important for any dive

computer because to be accurate, unless the computer has been keeping track of the

state of the gas in John's body from changing altitude, previous dives made, etc ... it

has to assume that everything is as described above. So John is about to make a dive

and he turns on his GFM dive computer. The GFM computer will initialize and start

keeping track of time and depth.

10

As used in the routine given in the GFM patent, we will use 0.1 minutes as the

time step for the GFM routine. In other words, every 6 seconds, the GFM routine

needs to run in order to keep track of the real-time state. Note that this means the

routine needs to complete its computation in no more than 6 seconds, before the time

the next routine call starts. We can visualize this using the plot shown in Figure 2.

The figure shows a dive profile, starting at the surface (0 ft), and going to a depth of

100ft. Notice that each time the basic GFM routine runs (shown as a program

function f(x)), there is a dot marking the execution time. Each execution is separated

by a time difference, labeled dt, where dt=6s. Note that each time the routine runs, it

runs in its entirety. Each time the routine runs, it needs only the current depth or

pressure input at that time, the current time, and any other constants defined during

GFM initialization.

Using real-time programming vernacular, this type of basic algorithm routine will be

loosely termed the algorithm's “kernel” or real-time “tick”, in this case representing

Figure 2: GFM Routine Execution (conceptual)

11

the most basic piece of the larger program. The larger GFM program would include

the real-time tick, as well as higher level algorithms that include running predictions

and any other routines that are needed to calculate the dive computers outputs.

Now, following Figure 2, consider that John completes the dive by ascending to

the surface, possibly stopping at intermediate depths on the way up. The GFM kernel

continues to run every 6 seconds, and every 6 seconds the real-time state of the gas in

John's body is up to date. This computation is essentially all that is needed to keep

the state of the John's body current. As mentioned previously, a high-end dive

computer based on GFM would require more computations. At a minimum, a high-

end GFM-based computer would need to compute predictions of future dive profiles

to give John real-time feedback on the consequences of future actions.

GFM Example – Prediction CalculationsGFM Example – Prediction Calculations

Let's suppose our diver John is at 100 ft and has been there for about 15

minutes. John may consider staying at that depth for another 15 minutes. The

problem is that this amount time at that depth (assuming the breathing mixture is air),

could force John to be required to take what are called decompression stops on the

way up. This may or may not be an issue for John. For example, if John has 20

minutes of air left in his tank, but the combination of his extra 15 minutes at depth,

plus the time needed to complete the decompression stops means that he would not

have enough air to complete the stops, then John will be in trouble if he in fact stays

12

at 100ft for another 15 minutes. This is an example where predictive calculations

done at the current time could provide John with vital information about the future.

In fact, one of the most basic outputs of modern dive computers is the Time-To-

Decompression, or No-D Time, and is the time remaining at the current depth for

which the diver can stay and simply ascend to the surface without taking any

intermediate stops (decompression stops) to avoid DCS. In other words, if John's

computer says that the NO-D time is 5 minutes, that means that John has 5 minutes

where he can remain at depth, then ascend to the surface, without making additional

stops on the way up. If John chooses to ignore the NO-D time given by the dive

computer, he can certainly do that, but then he will need to perform decompression

stops, or otherwise ascend at a specific rate such that he avoids DCS. As mentioned

previously, how many predictions or future options are run depends on the

application and the dive computer manufacturer's choices made during the design of

the specific product. In the dive computer industry, it is generally expected almost by

definition that a dive computer at least provides the NO-D time, as well as

decompression schedules once that time is exceeded. Beyond that, although a

predictive algorithm such as GFM can allow for providing more information, most

dive computers traditionally have not provided much additional information beyond

simple calculations such as PPO2 levels, breathing rates, and other simple

calculations.

13

Suppose, for example, that at every tick, additional prediction calculations are

run that determine the NO-D time, plus the consequence of taking so-called Safety

Stops [3][4] on the way up. Safety Stops are short (< 5 minute) stops made typically

at one shallow depth on the way up to the surface. These are recommended by dive

instruction and safety institutions such as PADI [5], and are generally followed by

divers as a safe practice measure. If a GFM computer ran safety stop predictions, it

could not only give John the NO-D time, but also the consequence of taking Safety

Stops at different depths, or of different lengths of time, for example. Given that

information, John could then decide, for example, that a 1 minute stop at 15 ft is

sufficient, as opposed to a longer time that might be recommended. General rules of

Figure 3: Prediction Calculations (conceptual)

14

thumb such as the “3 minutes at 15 ft” safety stop are meant to be a safety measure

under a wide range of conditions, however, a true real-time prediction of specific

safety stop times and their consequences might be more desirable and useful to the

diver.

Figure 3 depicts a dive to 100ft, followed by some time at depth, where the

prediction calculations are illustrated at one point in time. The dotted lines represent

two different prediction calculations, run at time t1. The first prediction labeled (1)

follows the path from the bottom depth up to the surface, without any stops. The

second ascent labeled (2), follows a path up to 15 ft for a safety stop, then up to the

surface. Also labeled on the upper plot are the resulting free gas volumes

corresponding to the predicted ascents (1) and (2). FGV1 is the FGV value that

would result in the diver's body if the diver followed path (1) and FGV2 is the FGV

value that would result if the diver followed path (2). Note that since GFM correlates

the amount of FGV to the probability of getting DCS (PDCS), and because we know

that safety stops are recommended as a general safety measure, it makes sense that

the plot shows the maximum value from path (2) smaller than the maximum from

path (1). In other words it should be clear why FGV2 < FGV1 after taking a safety

stop. Since the max FGV value is correlated to PDCS by GFM, it should be clear

why this information would be useful to John as he decides what to do precisely at

time t1 at depth. If John knows that ascending would produce say 30 ml of free gas

(or X percent PDCS), but that if he takes a safety stop on the way up the FGV would

15

be say 5 ml (or Y percent PDCS; Y < X), then John has a concrete measure of how

effective the safety stop would be. In fact, you can now understand why the more

predictions that can be run, the better informed John can be, and the better equipped

he is to make the right decisions during his dive. It should also be clear that if the

calculation cannot be run efficiently and provide output in a timely manner, that they

are useless to John as he tries to make a safety-critical decision.

Dive Computer Systems (General)Dive Computer Systems (General)

Personal Dive Computers (PDCs) have already been defined in terms of

purpose and function, and so this section will attempt to describe what a dive

computer is as an electronic product. A dive computer is typically a small embedded

computing device with 1 to 4 user input buttons, some type of segmented or dot

matrix user interface display, and in recent years a PC communication interface. A

general-purpose processor is typically used as a master and other processors/devices

as slaves. The master handles I/O, timing and clocks, A/D conversion for sensor

input, display control, flash memory for data storage, and virtually everything the

dive computer needs. Most if not all current devices handle existing algorithm

computation from within the main general-purpose processor, due to the relative

simplicity of existing algorithms.

PDCs come in many size and shapes, and are made by a few different

manufacturers in few different countries. Some of the first and oldest devices were

16

relatively large in size, and used relatively large batteries for power. Display screens

were much larger than today, and processing power was much more limited. As a

result, the first dive computers had very limited capabilities, but still proved useful to

divers who did not want to have to hand calculate dive times and schedules. PDCs

took off over the last 20 years and today we have companies that offer everything

from the low end basic computer under $100 to high-end, wireless/air-integrated, top-

of-the-line units that sell for thousands of dollars. Some units are still hand-held, but

they also come in wrist-top units and low-profile watch-style designs as well. Some

designs use sophisticated color dot-matrix displays, with multi-featured PC interface

and download software, offering everything from so-called pre-dive planning to dual-

algorithm selection and user customization. For more information a good source of

information is the latest article from Scuba Diving Magazine [6] that evaluates the

latest and greatest dive computers for 2009 from some of the top manufacturers.

A GFM Dive Computer SystemA GFM Dive Computer System

Scuba diving and dive computers in general have been discussed, and this

section will focus now on what a GFM computer is and specifically what is meant by

a GFM PDC in this study. As mentioned previously, the PDC designer has freedom

to design the device in many different ways, depending on the specific requirements

of the product being designed, but in this study we consider only the most demanding

type of design in terms of power, performance, and area footprint. To begin, we start

17

with the understanding that a GFM dive computer is first and foremost, a dive

computer. That means at a high-level, a GFM-based dive computer calculates many

of the same things that most all dive computers do. This includes the NO-D time,

decompression schedules, PPO2 levels, breathing rates and ascent/descent rates,

oxygen toxicity, and more.

In terms of hardware, we further assume the device has some sort of display,

whether it be a simple segmented unit for digits and icons, a dot matrix display for

graphical output, or a combination of both. We will assume some sort of

communication and download interface to a PC, whether it be wired or wireless. We

also assume the unit includes several user input buttons for control of the device and

general user input. We assume the device includes some sort of on-board memory for

storage of dive data, settings, constants, and other information needed by the

algorithm or operating system. In terms of external packaging, we consider a device

that has a low-profile watch-style design that can only be powered by a very small

non-rechargeable coin-cell battery. The batteries used for power in these type of

designs are typically 3V with a recommended (short duration) peak current draw of

around 20mA, a recommended continuous current draw of less than 1 mA, and a less

than 300 mAh capacity.

A GFM PDC needs to be running a real-time operating system of some form.

At a basic level, GFM requires that pressure and time are input on a pre-determined

18

schedule. For this study we will consider that the basic time-step or “tick” interval is

0.1 minutes (6 seconds), as given in the GFM patent description. This means that no

matter what else is calculated on other timescales, the real-time state of the algorithm

needs calculate on a timescale of 6s or less. We also know the importance of

prediction calculations for the outputs of a GFM-based PDC. Because of this, we will

set the goal that the 6s interval is the timescale in which the real-time state, as well as

all prediction calculations must complete. This could be done using more

complicated schemes whereby data is interpolated between longer timescales of

computation, but to take full-advantage of GFM and to be as responsive as possible,

we will say that within 6s, we want the real-time state plus all computation for all

PDC outputs to be complete.

Note that for a low-power battery-operated system we would want the resource-

intensive computation portion of operation to take up only a fraction of the time in an

active/on state (for example at 5% duty), but still as a strict upper-limit real-time

bound, we will use 6s. Duty cycle in this case refers to what percent of the time-step

timescale (6s) the device is actually active and running. This is in contrast to when

the calculations are completed, and the device resumes a low-power state. It is

important to note then, that in a low-power device such as a PDC, any opportunity for

using a low-power system state is desired for maximum battery life. So for example,

although we have 6s to complete the real-time state calculation as well as predictions,

if we can finish in 1s, or say 1/3 of a second, that would be even better. The more

19

time the processor can stay off, the longer the battery will last. This type of energy

consumption calculation will be specified more clearly in later sections.

C-Code Implementation of the GFM Algorithm C-Code Implementation of the GFM Algorithm

The original GFM algorithm as written by its inventors, is a VB-Code based

routine that simply runs the core GFM routine, and does nothing more. This is

necessary but not sufficient to run a GFM-based dive computer. There are a couple

reasons for this. One reason is that although the VB-code was designed for and runs

perfectly well on a PC with relatively large memory and high processor power, for a

real embedded device running on a coin-cell it is not optimized in any way. All

variables are double-precision floating-point, and for a low-power application this

presents a prohibitively large memory footprint.

Secondly, the routine presented in the patent is not designed for a real-time

embedded system, rather, it is simply a procedural routine that starts with inputting

parameters for a specific dive, and ends with outputting values to a file on a PC. In a

real system, real pressure data from analog sensors is sampled at regular intervals,

and time is broken up into slots for the operating system to be able to handle other

tasks in addition to GFM. A practical GFM algorithm could not simply run through

all calculations at once to compute the needed PDC outputs, rather, routine calls

would need to be carefully and precisely scheduled to make the best use of processing

power, and to reduce battery current draw.

20

Lastly, the routine in the patent represents only the simplest use of GFM,

calculating through one pre-determined dive profile. There are no predictive

calculations being run in parallel, and no higher-level algorithms as would be needed

in a full dive computer product design. In short, the original version of the GFM

routine needed to be re-written in a form suited for a real-time PDC design. The code

was re-written in C, and the new routine(s) were optimized to provide a more

efficient and suitable starting point for design. It should also be noted that although

the patent describes that GFM can be used in a multiple-tissue model, this study

focuses only on a one-tissue model for simplicity.

To describe the C-code implementation of GFM, we start by looking at the

code at a high level. There are certainly many different ways to implement real-time

systems for embedded targets [7]-[9]. Depending on whether you have one processor

or more, what type of processors are used, and depending on the specific resources

for the application, the code can be greatly optimized for the application. In terms of

C-code, at a high-level, specific details of the processor architecture are not so

important since the compiler would typically take care of many needed optimizations

and low-level detail. For simplicity and for the purposes of writing high-level C-

code, we will consider a system that runs on one processor. Furthermore it is noted

that in place of having real pressure input from a sensor, routines are needed that

simulate pressure changes as inputs to the applicable GFM routines.

21

A Simulation-Only Implementation Structure

In the next section the program structure for a typical real-time implementation

for an embedded target such as a battery-operated dive PDC will be described. In this

section we are concerned with what the program looks like when we are concerned

about accurate, representative and functional simulation, and not necessarily about the

program being suitable for a real-time implementation. This is important because

much needed work can be done without having to implement the algorithm as a real-

time algorithm. For example, obtaining expected outputs for given input vectors can

be found by simulation and the results do not depend on whether the code was run in

real-time or not. This type of use is very important for application profiling, to be

explained more in -depth in a later section, where extensive simulations are done on a

wide range of input vectors to characterize the application program.

A simulation only implementation structure looks very similar to the GFM

routine given in the GFM patent. This is not surprising since the purpose of the

routine in the patent is similar to that described above, to be used for simulation-only

purposes. On the other hand, some changes were made in the C-code version to

facilitate moving toward a real-time implementation. In that sense, this version

described here is very close to what a final-real-time implementation would look like,

except that it does not run in real-time.

The high-level pseudo-code in Figure 4 shows a simple program structure used

to run simulations. The main routine initializes variables, then runs various types of

22

dives as required. What dives to run can come from a simple input vector file

containing depths and times, or the dives can be hard-coded in special routines used

only for testing. Note that to run an ascent or descent, some ascent/descent rate is

required, and it is noted that a standard 60 ft per minute (fpm) will be used, although

this can be changed anytime by inputting a new rate into the various functions or by

setting a global variable holding this parameter. More complicated dives with varying

ascent/descent rates can also be constructed similarly.

The copyRealTimeState function is essential to run prediction calculations for

the following reason: If prediction calculations were done on the same set of variables

as the real-time state calculations, the real-time state would change. This function

copies all the required variables to another set, in order to perform prediction

calculations without affecting the real-time state. Otherwise this simple set of

functions is essentially all that is needed to simulate dives using GFM, including

running predictions. The program actually used is slightly more complex, however,

the pseudo-code representation below is representative of the functionality of the real

code. For example, other higher level functions that use these low-level functions

also exist, such as “findNODtime” and “predictSafetyStop”.

23

Note that instead of hard-coding specific dives to be run (as shown in the main

function above), it could also just as easily be written such that dive parameters are

read from a file and processed accordingly. What is important here is the overall

structure and concept of the program.

A True Real-Time Implementation Structure

As will become clear later in this paper, this study will focus mostly on one

portion of a GFM system – the base GFM routine and optimizations related to that

void main() {
initialize(); // initialize variables and constants
openLogFilesForOutput(filename, ...);
runNODDive(depth, time);
runMultiLevelDive(depth1, time1, depth2, time2, ...);
runRepetDive(depth1, time1, depth2, time2, ...);

}

// setup constants, calculated values, variables
void initialize(arg1,arg2,...) {}

// step pressure and time to ascend to specified depth
void ascendTo(arg1,arg2,...) {}

// step pressure and time to descend to specified depth
void descendTo(arg1,arg2,...) {}

// wait for a specified amount of time at current depth
void waitFor(int time) {}

// run one GFM time-step (used by other routines)
void doTimeStep() {}

// used to run predictions, copy all state variables
// for use in predictions
void copyRealTimeState() {}
Figure 4: Pseudo-code for a simulation-only implementation of GFM

24

routine. It is important, however, to understand what a practical application would

look like at a higher level. This section will describe how a true real-time GFM-

based dive computer product might be structured, in terms of the operating system

and high-level code. Note that there are certainly many different ways to organize

and structure real-time programs, and the following description is only one method.

Because the target application is an ultra-low power battery-operated system, this

description assumes that there is only one processor available.

The high-level pseudo-code in Figure 5 shows how a real-time GFM program

running in a dive computer might be structured conceptually. Since the system is

ultra-low-power and real-time, the program first initializes, then begins an infinite

loop that ends with the processor going to a low-power sleep state. This is typical for

a battery-operated low-power system such as a dive computer. The processor can

wake up from interrupts such as timed interval interrupts, user input button (i/o)

interrupts, or other interrupts setup in the particular system. Some of the functions

that need to be performed when the system wakes up are shown to occur at different

time intervals.

For example, for the system to be very responsive to user input, user input

button interrupts might be checked at every 1/8 second and processed accordingly.

Also occurring on regular intervals would be the task of keeping track of depth and

time. Updating depth involves sampling an analog pressure sensor via an analog-to-

digital converter, and updating time involves simply increasing the current value of

25

the variables used to keep track of time. Being that a dive computer is a real-time

system, it is assumed that there is a mechanism that allows for real-time to be tracked.

As was mentioned previously, considering that the target application is a watch-style

design, it is noted that a standard 32khz watch crystal is typically used in watch

designs to keep track of real-time. There are of course other tasks that must be

serviced for a real-time dive computer design, but the pseudo-code below includes

some of the major components required. Note the GFM algorithm computation

happening on the 6 second timescale described previously.

void main() {
initialize(); // initialize variables and constants
while(1) {

// process events from ISRs
if(time interval == 1/8 second) {

// sample new depth, and keep track of time
// process user input buttons

}
if(time interval == 1/2 second) {

// update output display
}
if(time interval == 6 seconds) {

// process GFM algorithm: run GFM timestep and predictions
gfm_timestep();
runPredictions();

}
goToSleep(); // wait for interrupts

}
}

void timerInterrupt() {
// flag interrupt for later processing

}
void userButtonInterrupt() {

// log button press for later processing
}
Figure 5: Pseudo-code for a real-time implementation of GFM

26

It is very important to note that in the real-time pseudo-code in Figure 5, that

the GFM time-step routine is meant to be a sub-routine. This is important because the

we know that the predictions that need to be run involve many time-steps, and these

time-steps may possibly take hundreds of milliseconds to process. The point is that if

the required computation were simply in one continuous loop, as in the original VB-

coded GFM routine, it may not be able to be run within a strict real-time system with

time allotments such as above. In the description of the system above, tasks are

scheduled into 1/8 second time-slots, such that any required computation occurring in

one time-slot must complete within 1/8 second, or else the system is unstable. With

each time-step run as a sub-routine call, this system is easily accommodated. The

programmer only has to make sure that if each time-step runs in X ms of time, that no

more than (125ms / Xms) time-steps are run in any given time-slot.

For example, if prediction is needed to find the maximum free gas from an

ascent to the surface from the current depth, the following represents the calculation

needed to schedule the task and perform the prediction. We start by considering that

at some depth D, it would require M = (D ft / (ascent rate in ft/min)) minutes of real-

time to reach the surface. For M minutes, you need N = M * (10 time-steps per

minute) time-step calculations to calculate the ascent to the surface. So if D=60 ft

and the ascent rate is 30 ft/min, it takes M=60/30=2 minutes to reach the surface, and

it requires N=2*10=20 time-steps to be calculated. Since we want the maximum

FGV on the surface after the ascent, we need a maximum of around 15 minutes of

27

calculation on the surface for the free gas to peak, so that makes for another 150 time-

steps. In total, to find the peak free gas for an ascent from 60ft at a rate of 30ft/min

including 15 minutes of surface time, it would require 170 calls to the GFM time-step

routine. Now suppose each time-step routine takes 1ms to process. Even if the

routine could be processed that quickly, it would still require more time that is

available in each time-slot. The 170 time-steps could however be broken up as a task,

where say 50 time-steps are run inside each time-slot. At that rate it would require

four 125ms timeslots. As long as the prediction is completed before the next real-

time state calculation (every 6 seconds), the system will be stable at least in terms of

time-step scheduling and given the time allotments as described here. This type of

calculation above will be used frequently, and so the relationship between the amount

of real dive time simulated versus the number of time-steps needed is expressed in

equation form in Figure 6.

28

A Set of Visual Aids for GFMA Set of Visual Aids for GFM

The concepts used with GFM are complex, and for the most part, the details of

how the algorithm works and was derived is left for the reader to review in the

algorithm patent document. On the other hand, the concepts are so central to the

customized hardware research and design in this study. For that reason, this section

will provide some visual-aids to help with some of th concepts. The reader is

encouraged to refer back to this section for clarity while reading later sections. The

format that follows is a set of images with explanatory captions.

Let

Nts = # time-steps required for prediction

DT = minutes of real dive time being simulated

TSPM = 10 time-steps / minute

CPTS = # cycles per time-step

Tts = Time-step processing time in seconds

Tpred = Prediction processing time in seconds

Then,

Nts = DT * TSPM Equation 4

Tts = CPTS / freqsystem_clock Equation 5

Tpred = Nts * Tts Equation 6

 = (DT * TSPM) * CPTS / freqsystem_clock Equation 7

Figure 6: Time-step and prediction relation with real time

29

Figure 7: A dive profile for a simple dive: 100ft bottom depth, bottom time BT=t2-t1,
ascent/descent rates (AR/DR) in fpm. Note that bottom time for a simple dive includes the time
starting from the descent from 0ft (surface).

Figure 8: A dive profile for a simple dive with a safety stop. The safety stop is 3 minutes at 15ft.

30

Figure 9: Free gas generation from two different future ascent scenarios (1) and (2) calculated
at time t1

Figure 10: GFM time-step computation every 6s during dive

31

Standard Set of Dive ProfilesStandard Set of Dive Profiles

Like many real-time embedded applications, the GFM application takes some

input(s) and produces some output(s). In the case of GFM, inputs are physiological

constants, calculated but fixed values, as well as time and real-time sensor inputs.

Outputs from GFM are data and control values - primarily the current and future

(predicted) free gas volumes. To understand the algorithm and application, it is

important to simulate outputs for given inputs. As will be clear in a later section

dealing specifically with the importance of application profiling, a very robust input

vector set is needed to properly characterize the application as part of the design flow

for creating customized hardware. Besides the fixed inputs GFM requires, time and

depth are the main inputs to GFM. At a higher level, what constitutes a robust,

sufficient, and standard, set of dive profiles for algorithm characterization is

important to define.

Figure 11: No decompression limit (NDL) calculation concept from points (t1,g1), ... ,(t3,g3).
Note that the times t1, t2, t3 refer to the time of ascent associated with resulting free gas volumes
g1,g2,g3, and the NDL is the ascent time when the resulting free gas volume exceeds Vcrit.

32

To define a set of dive profiles to be used for algorithm characterization is not a

simple task. As was mentioned previously, there are many types of divers, and

correspondingly there are many types of dives. There are, however, a few sources of

information that can be used to help accomplish this. The first is the historical and

experimental test data, such as the U.S. Navy / NOAA Dive Tables [10], U.S. Air

Force technical reports, and other data used by dive science researchers. The data

contained in NOAA / U.S. Navy dive tables, for example, have even been used as a

basis for many modern algorithm designs. Secondly, information found from dive

instruction institutions and retail dive equipment shops also provides more

information.

For example, most dive equipment retailers that sell or rent high and low-end

equipment will tell you that most of what they carry is related to recreational diving.

Recreational diving refers to relatively shallow depths for relatively short times.

What that means exactly is up for interpretation, but we can say that certainly

recreational diving does not typically include so-called decompression diving, where

divers stay under water after their NO-D time is exceeded. That means most diving is

NO-D diving to shallow depths. Concerning air mixtures used, again, recreational

diving typically refers to diving on compressed air, as opposed to other mixtures such

as Nitrox (nitrogen and above 21% oxygen) or Heliox (includes helium). For Nitrox,

mixtures are typically between 22% and 50% Oxygen, although diving is also done

above 50% and up to 100%. Heliox is used only in smallest population of the diving

33

community and will not be considered in this study.

A couple more dive types we need to mention here are repetitive diving, high-

altitude diving, saturation diving, and multi-day diving. Repetitive diving refers to

multiple dives being performed one after another, with some relatively short time in

between. For example someone might dive to 40 ft for 20 minutes, surface for some

time, then repeat the dive later in the day. This type of diving has its own

consequences in terms of the body's reaction and in terms of safety limits. Similarly,

high-altitude diving has its own differences from sea-level diving, and consequences

in terms of the body's reaction to it. Multi-day diving refers to diving day after day

for an extended period of time, and again, has its own consequences. Saturation

diving refers to diving for extended periods of time, such that the body becomes

saturated with Nitrogen. This is again a specialized type of diving performed by a

relatively small population of divers. All of these dives are done in many parts of the

world for different purposes, but not by large population of divers.

In a general sense, we need a robust set of input vectors that accurately

represents all types of dives for which a GFM-computer would be used. For the

purposes of application profiling (to be elaborated on in a later section), it would be

useful to be able to run simulations from a script that includes possibly hundreds of

dives, that represents this robust set of inputs we seek. The following lists detail dive

profiles that are part of this standard set of dives used in various parts of this study.

Note that all dives below also include the predictions run at each time-step during the

34

dive, as described in the next section on performance constraints.

It is also noted that although we define the following sets of dives, in fact we do

not need to run all sets each time profile information is needed. The reason is that the

algorithm code for GFM is so simple, and contains so few branches, that pretty much

every line of code is executed every time the routine runs, regardless of what type of

dive is run. This is a unique feature of GFM, in that although it is a complex theory

based on real physiological phenomena, its elegance is exhibited in its utterly

simplistic formulation. As detailed in the patent, complex mathematics take the form

of simple discrete formulas, easily implemented in software, and in fact almost

exactly the same no matter what dive profile is input.

When a program runs different instructions corresponding to different inputs, it

is said to exhibit program phase information [11][12]. Profiling techniques [35]

become quite complex when programs run in different phases of operation, but for

GFM this is not an issue. Definitely there is a difference between dives that produce

free gas and those that do not, but as we will see in Chapter 5 the difference is totally

negligible, and in fact robust profiling can be done a limited set of dives. In fact out

of the dives presented below, only sets 1 through 4 are used for profiling, and results

are inferred for all cases from those results.

• Set 1: NO-D Dives on Air: Dives to one bottom depth for a specified period of

time, followed by ascent to the surface, then a surface time of 20 minutes. Depths

starting from 40 ft to 180 ft, each for times of 1 minute up to the NO-D limit for

35

each depth. To reduce the number of simulations but still keep a representative

sample, we can step depth by 20 ft increments, and we will simulate out to half of

NO-D time and to NO-D time.

• Set 2: NO-D Dives on Air with Safety Stop: Same as above but including a 3

minute stop at 15 ft before ascending to the surface.

• Set 3: NO-D Dives on Nitrox: Same as the above NO-D dives on Air but using

Nitrox mixes of 25% , and 30%, oxygen.

• Set 4: NO-D Dives on Nitrox with Safety Stop: Same as above but including a 3

minute stop at 15 ft before ascending to the surface.

• Set 5: Repetitive Dives on Air: Dives to one first bottom depth out to NO-D

time, followed by ascent to the surface, then a surface time of 2 hours, followed

by another NO-D dive to the same depth. Depths range from 40 ft to 190 ft.

• Set 6: Multi-Level Dives on Air: Dives to one first bottom depth out to 5

minutes of NO-D time remaining, followed by an ascent to half the first depth, out

to the NO-D time, then ascent to the surface for 30 minutes. First bottom depths

range from 60 ft to 190 ft.

• Set 7: Decompression Dives: Decompression dives following the US Navy

Standard Dive Tables ranging from bottom times of 40 ft to 130 ft and including

dives with hundreds of minutes of decompression time.

36

Design Constraints for a GFM Dive ComputerDesign Constraints for a GFM Dive Computer

To summarize the information on dive computers and the GFM algorithm, and

to move forward in later sections, we need to detail exactly what the requirements are

for the system. Here we detail constraints on power, performance, and area footprint

for hardware running GFM inside a dive computer. The proposed implementation in

Chapter 5 will be based on this and all information leading up that chapter.

Performance Constraints

To begin with, we can specify performance constraints. By this we mean that

we will specify here exactly how much throughput is expected per some unit of time.

As we saw previously, the computation needed in a GFM system is made up of two

main parts. There are (1) the real-time state calculations, and (2) the prediction

calculations. The real-time calculations involve calls to the base GFM time-step

routine. The prediction calculations can be broken down into routines needed to

simulate depth changes, and calls to the GFM time-step routine. For the real-time

state, we know that the routine only needs to be called once every 6 seconds with an

updated value for time and depth. As we will see in Chapter 5, this is a relatively

easy constraint to meet, but it must be met nevertheless. Specifying performance for

prediction calculations is more involved, and meeting them makes up the most

challenging part of the design. Note that in constraint 1, time refers to computation

processing time, and depends of course on details of the hardware used, including

37

processor frequency, and cycle count per time-step. For the purposes of setting

constraints, we can simply relate the number of time-steps needed to compute within

strict real-time bounds, and the details will be worked out later.

(Processing) time per time-step <= 6 sec Constraint 1

As was mentioned earlier, how many and what type of predictions are needed

for GFM is not set in stone, and in fact are up to the product designer in terms of how

much useful future information is needed for the specific implementation. That being

said, it was already mentioned that this study will focus on the most demanding, high-

end type dive computer application, for which the power, area, and performance

demands are greatest. As will become clear in a later section, we are focusing only

on no-decompression dives, and the results and design choices made will be shown to

be equally applicable to other types of diving. For the purposes of this study, we will

assume that during a no-decompression dive, we want to be able to calculate the NO-

D time, as well as the result of taking a 3-minute safety stop at 15 ft.

Remember from Chapter 1 that to be able to calculate the NO-D time, we need

a set of points (t1', Max1), (t2', Max2), … (tn', MaxN) that can be used to predict the

time when the peak FGV will breach the critical FGV, Vcrit. This essentially

amounts to gathering data points from ascent predictions run after each time-step, and

interpolating or extrapolating for the future time when the FGV will breach Vcrit.

38

This assumes that an immediate ascent max FGV has hot yet breached Vcrit, and we

are in fact still in a no-decompression dive.

Predictions to be completed within 6 seconds

1. An immediate ascent prediction starting from the current time and depth

2. An immediate ascent prediction after 1 minutes at depth

3. An immediate ascent prediction after 5 minutes at depth

4. An immediate ascent prediction after 10 minutes at depth

5. An immediate ascent prediction after 35 minutes at depth

6. An immediate ascent prediction after 60 minutes at depth

7. The result of a safety stop of 3 minutes at 15 ft

Given the list above, we can calculate the amount of processing that would be

needed, considering only the time-step computation and neglecting the subsequent

calculation of NO-D time. We will use Equation 4 to indicate how many time-steps

need to be processed within the 6s boundary, in order to be able to calculate the NO-

D time. To find the number of time-steps, we first need the total number of real-time

dive minutes simulated from predictions 1 through 7 above. To be able to figure out

how much time the ascents require, we need a depth. Since depth can be any value,

we have to assume the worst case where the diver is at 400 ft. The value of 400 ft is

chosen only because most dive computers do not even go beyond that limit, and so

that depth would give the maximum ascent time for a diver. As mentioned

previously, we will use 60 fpm as the ascent rate, and 15 minutes of surface time to

39

wait for the free gas to peak. We have the following simulated dive times, calculated

as: <time at depth> + <ascent time> + <surface time>

• For prediction 1: 0 min + (400 ft / 60 fpm) + 15 min

• For prediction 2: 1 min + (400 ft / 60 fpm) + 15 min

• For prediction 3: 5 min + (400 ft / 60 fpm) + 15 min

• For prediction 4: 10 min + (400 ft / 60 fpm) + 15 min

• For prediction 5: 35 min + (400 ft / 60 fpm) + 15 min

• For prediction 6: 60 min + (400 ft / 60 fpm) + 15 min

• For prediction 7: 0 min + (400 ft / 60 fpm) + 3 min + 15 min

The total amount of real dive time (found by adding up the simulated dive

times) considering predictions 1 through 7 is roughly 261 minutes. Since we know

there are 10 time-steps needed per 1 minute of simulated dive time, we know then

that to calculate these 7 predictions will involve running 2610 time-steps. Note that

since we still need to run the 1 time-step for the real-time state, corresponding to

constraint 1, we will combine the time-steps needed for a total of 2611 to be

completed within the same 6s and label this new constraint Constraint 2a.

time for 2611 time-steps <= 6 sec

time per time-step <= 2.297 ms Constraint 2a

We make one more note here that it is not sufficient to simply meet Constraint

2a since, that would mean the process just meets the functional requirements, and

40

would need to be processing at full speed 100 percent of the time. For a low-power

system, these computations need to be run faster and spread out using a duty cycle

percentage, where some portion of the time the processor is active, and the other

portion it is in a low-power state. For this reason, we will introduce Constraint 2b

which implies a 50% duty cycle, meaning that we wish to meet Constraint 2a while

only processing 50% of the time and in a low-power state the other 50% of the time,

given some fixed time period (seconds, minutes, etc).

time per time-step (50% duty) <= 1.149 ms Constraint 2b

Note that we are not concerned at this point how these constraints will be met.

As we will see, the fact is that whether or not this can be met is a function of the

efficiency of the implementation algorithm, program code, and hardware. It is also a

function of the chosen processor speed and any applicable real-time scheduling

constraints (more later). Of course the processor speed relates to power, which has its

own constraints as well. For now we simply state that in this real-time system, a

GFM dive computer the base time-step routine must calculate within a strict bound of

no more than 1.149ms. This would allow for the real-time algorithm state, as well the

predictions outlined above to all be calculated between each time-step run every 6

seconds.

As we will see later this is a very aggressive goal considering available low-

power hardware, and if met, would amount to a massive increase in performance.

The trick is to make sure not only the performance goals, but also the power and area

41

constraints are met as well. For now this performance goal above will be enough to

continue with the design. Later we will see why we need to consider not only no-

decompression dives, but also decompression dives. Looking ahead a bit, in fact this

is another reason why constraint 2b was set so aggressively, so that the hardware will

be fast enough to handle decompression calculations.

Power Constraints

Defining power constraints for a dive computer is rather involved. We know

from Chapter 1 that the device is to be a battery-powered, watch-style design that

uses a small 3V coin-cell battery. We will use a Sony CR2430 Lithium Maganese

Dioxide type battery [13] as the example battery since this and similar types are used

with various modern watch-style dive computer products. These type batteries can

typically supply 25mA maximum short-duration peak current, with a recommended

continuous current of around 200uA. They have a capacity of 300 mAh.

Now, to define a power constraint, we need to first define a set of use-cases. In

other words, it is not sufficient to simply say that we wish to have a limit of X mA, or

Y mAh, when that is not correlated with the use of the product. For example, if we

said that the limit was 300mAh, what would be the reasoning? Would that tell us

how long the user will be able to use the product? Of course it would not, because

how long the product will last depends on how much it is used, and how much power

is drawn from the battery when it is used. The point here is that we cannot use an

arbitrary power limit, we need to use something that is practical, and at the same time,

42

relates to the usage of the product.

We will define a power constraint such that it relates the amount of time the

product can be used for under a normal and/or worst-case scenario. Many times

companies will use a typical-use-case information to define the amount of time their

product can be used for. For example, let's consider modern cellphones. As of

10/29/09, from the corporate website, Apple says that the Iphone 3G has a battery

lifetime specified as “up to 5 hours” (talk time) on the new 3G network, or 277 hours

standby time, where temperature, humidity, and altitude are also specified. That

sounds very simple, but upon closer inspection, you will find a separate link to

articles [14][15] about how battery life is calculated, and how it can be optimized. In

addition to explaining how different applications and application settings affect

battery life, one of the more interesting suggestions is that they say you should use

your Iphone regularly to keep electrons moving inside the batteries.

What this all boils down to is that whatever the power constraints were that

they used in designing the Iphone, they were very specific to some particular usage,

and in fact Apple has dedicated multiple web pages to explain what happens when

you deviate from standard usage. More appropriate to the discussion is the 2006

press release from Texas Instruments [16] explains how Pelagic's scuba dive

computers can last over 2 years in “ordinary dive use” using TI's low-power MCUs.

They make note of the fact that Pelagic uses the low-power modes of the MSP430

microprocessor when in watch mode on the watch-style Atom 2.0 dive computer

43

product. What defines “ordinary dive use” is up for discussion, but we will arrive at a

concrete definition for our purposes here.

For our GFM dive computer, we will define the following use-case, in order to

arrive at a reasonable power constraint. Long dives require large tanks of some

breathing mixture, and it is impractical for most divers to carry multiple tanks or re-

fill them on the surface mid-dive. Because of that, we will say one, 30 minute, no-

decompression dive per day covers typical usage for the general case. We will

further stipulate that a typical dive is to one maximum depth, followed by an ascent to

the surface at a rate of 60 fpm. We will say that if a diver makes one of these dives

per day, the dive computer should last at least one year without changing the battery.

The power constraint then, is two-part, given as constraints 3 and 4:

The instantaneous (short-duration) power and continuous (long duration) power draw
from the battery must be such that a Sony CR2430 (or equivalent) type battery can be used
to power the device. Constraint 3

The device must last a minimum of 1 year, supposing the unit is used in active (dive) mode
for up to 30 minutes per day, following a typical dive profile as described in the preceding
paragraph. Constraint 4

Area Footprint Constraints

Defining an area footprint for the processor hardware used for GFM means that

we wish to put a boundary on how large the hardware is. We note again that the goal

is to create the most efficient low-power hardware design that can fit inside a watch-

style dive computer product. This is not something that can be easily quantified, but

the for the purposes of this study we can again use the Pelagic Atom 2.0 product as a

44

reference. The Atom 2.0 is a low-profile watch-style dive computer product that is

fully featured and was at the time of its release, a top-of-the-line product. If you take

apart an Atom 2.0, you will see the the printed-circuit-board (PCB) is no larger than a

2.25 square inches. Of course the board has many other components like EEPROM,

and circuitry related to user input, and display output, so we need to consider that the

processor size will be considerably less than the total board size. We can consider

that the x4xx series microprocessors in the TI MSP430 family processor hardware is

less than 2 mm in height, and about 12mm square (without pins). We will use

Constraint 5 below for our processor hardware based on the information above.

Processor hardware < 12 sq. mm, < 2 mm (height) Constraint 5

45

Chapter 2: Low-Energy Hardware Design

As will begin to become clear, the goal of this study is to investigate energy-

efficient design options for the particular application of a dive computer utilizing the

GFM algorithm. For this reason, we need to begin by understanding energy as it

pertains to CMOS circuits. Where does the energy used in a processor come from?

Are there different types of energy? Do different components use energy differently

or at different times? These are all valid questions and important to understand when

discussing energy-efficient hardware. Customizing hardware for energy efficiency

involves understanding where options exist, and where customization can in fact be

made. The goal is to be able to use a fundamental knowledge of energy to inform

design decisions from the beginning of the design process.

Sources Of Energy in CMOS CircuitsSources Of Energy in CMOS Circuits

Whether it be a general-purpose processor (GPP), or an application-specific

integrated circuit (ASIC), based on the application requirements we will now assume

that some sort of processor needs to be involved in implementing the GFM algorithm

most efficiently. More implementation options will be discussed in chapter 3, but for

now we will assume that whatever the chosen implementation in terms of system

architecture, the hardware will involve modern complementary metal-oxide

semiconductor (CMOS) circuit technology used in modern processor design. In this

case, we need to understand where the energy comes from in the circuits to

46

understand how to design for an efficient and high-performance system.

Digital CMOS circuits are made of course of CMOS transistors [17]. CMOS

circuits dissipate energy simply by being powered up, and by switching. We can

describe the power consumption in a CMOS circuit as given in Equation 8.

Ptotal = Pstatic + Pdynamic Equation 8

Static power refers to power that is drawn simply by the transistors being present in

the circuit. Modern designs try to minimize static power as much as possible, but it

cannot be completely be removed unless the transistors are in fact not connected to

the circuit. Static power can be broken down further into standby power and leakage

power. Standby power is the product of standby current and supply voltage Vdd, and

can usually be neglected in modern designs. It does, however, play a role in memory

circuits and in some circuit technologies. Leakage power is the product of leakage

current and Vdd, and is a function of how modern MOS transistors are designed. As

long as power is applied to the circuit, leakage current is a factor in total power

consumption. Note that leakage power is increasingly becoming an issue as transistor

sizes decrease, and there has been a large amount of research recently dedicated to

finding solutions to this issue as we move into the future [18][19]. Equation 9 shows

the static power broken down as described above.

Ptotal = [Pstandby + Pleakage] + Pdynamic Equation 9

The main source of power consumption, especially in a processor-based design,

is the dynamic power. Dynamic power refers generally to the switching of the CMOS

47

transistors as the logic circuit operate. Each time the transistors switch there are two

types of power that are dissipated, short-circuit power and capacitive power. Short-

circuit power and current refers to how when a CMOS transistor switches, one

transistor transitions from an on to an off state, and the other transistor from an off to

an on state. This results in a a small period of time where both transistors are on, and

the current is shorted from Vdd to Vss (where Vss is the ground or virtual ground

terminal of the transistor). It is noted in [17] that because short-circuit current is a

result of switching, it can be considered as an additional capacitance and so dynamic

power can be simplified as in equation 11, showing proportionality to switching

probability α, total capacitance Ctot, Vdd
2, and the clock frequency fclk.

Ptotal = [Pstandby + Pleakage] + [Pshort_circuit + Pcapacitive] Equation 10

Pdynamic = α*Ctot*Vdd
2
*fclk Equation 11

Capacitive power comes from average switching probability, the clock frequency, and

the switched capacitance in the circuit. It is proportional to α*C*Vdd
2*fclk. It is this

capacitive power that we are most concerned with in processor design, for obvious

reasons. First, it makes the most significant contribution to the overall power profile

of the circuit. Modern processes minimize static power as much as possible, but

dynamic power is still present when transistors switch. From Equation 11 we can see

that reducing any of the factors would reduce the dynamic power, and there exist

many different techniques to accomplish this, to be explained in the next section.

48

Techniques to Reduce Dynamic Energy ConsumptionTechniques to Reduce Dynamic Energy Consumption

Dynamic energy in CMOS circuits was shown to be proportional to

α*C*Vdd
2*fclk. This means to reduce dynamic energy, we can lower the amount of

switching, the capacitance of the circuit, the power supply voltage, or the clock

frequency. This seems simple enough, but each choice has its own consequences.

Lowering the supply voltage, for example, has a dramatic effect, since dynamic

power is proportional to the square of Vdd. However, one trade-off is that this can

increase the propagation delay of combinational logic circuits. The voltage cannot be

scaled indefinitely either, and there are limits. As supply voltages reduce, leakage

power becomes more of an issue, and so again there are trade-offs. Designs can

employ complex structures where critical regions are designed such that have short

propagation paths, and where uncritical regions are otherwise not optimized. These

designs can strike a balance where power is reduced, and issues related to low supply

voltages are minimized. In [25], the theoretical and practical limits of voltage scaling

are discussed, and in [26], a solution to one particular related issue of degraded

performance due to voltage scaling is discussed.

Lowering the system clock frequency is another simple way to reduce power

consumption, but has the obvious effect of reducing performance at the same time.

Performance for a processor is defined in different ways by different manufacturers.

Performance metrics are described differently in terms of what type of processor is

49

being measured. For example, some manufactures of reduced instruction set (RISC)

and complex instruction-set (CISC) processors use the metric of millions of

instructions per second, known as MIPS. How many MIPS a processor is capable

of is some measure of the architectural efficiency as well as performance, since, one

processor using all the same parameters (technology, supply voltage, etc) as another,

can have a dramatically higher MIPS than the other. While lowering the clock

frequency lowers the power and correspondingly the performance, some performance

can be increased by increasing Instruction-Level-Parallelism (ILP). Architecting

more ILP in a processor is one way it can process more instructions per second given

a fixed frequency, and there are many techniques that exist [17][20][21] for doing this

such as Pipelining and using more complex architectures. More on architecture

choices will be discussed in the next chapter.

Lowering the capacitance in a processor can also decrease the power

consumption. Capacitance comes in the form of capacitance found at each node, or

each transistor, and capacitance that exists with the interconnect structure used

between different components in the design. Reducing capacitance means reducing

delays and thereby increasing performance. Architectural choices, as well as

technological choices affect the inherent capacitance in a design.

If we look at different levels of abstraction in the design of custom hardware,

we can see which types of techniques affect power consumption and in what

proportion. This is depicted in Figure 12. The figure shows how at the highest level,

50

while algorithm design choices offer the most amount of power savings and take the

least amount of time, they can also be the least accurate in determining how much

power would be saved. Following a trend of lesser power savings, but increasing

design time and accuracy, system level, architectural level, and gate and circuit level

choices follow. At the other extreme, physical level design (design at the transistor

and silicon level), you get the least amount of power saving, with the most amount of

design time needed, but with the best accuracy. This is obvious since if you design

each transistor you know exactly where each component of power is coming from,

and you have the most fine-grained control over power consumption. At the

algorithm level, you need virtually no knowledge of the underlying technology to

make decisions, but you can make quick changes that result in huge power savings by

optimizing the algorithm and reducing unneeded operations.

Abstraction Level Power Savings Design Time Accuracy

Algorithm Most Least Worst

System

Architecture

Gate

Circuit

Physical Least Most Best

Figure 12: Abstraction Level vs. Power Savings

51

This study focuses mostly on the upper four levels of abstraction from Figure

12, the algorithm level, system level, the architectural level, and the gate level. As

will become clear in Chapter 4, an ASIP implementation will be recommended for a

GFM-based dive computer. The work done in this study follows the same order from

the highest level of abstraction performing algorithmic optimizations, down to the

gate level where choices are made for a design written in a Hardware Description

Language (HDL).

At the algorithmic level, included in this study is a re-write and re-design of the

original algorithm. Operations are reduced, and more efficiency is achieved by

reducing memory access and high-level operations in a way that makes for possibly

the largest memory consumption reduction. Reducing operations, re-ordering and re-

scheduling operations, reducing memory access, and reducing memory size are

different techniques used to optimize at the algorithm level. As was explained

previously, it is difficult to determine how much power is reduced at the algorithm

level since it depends so much on the underlying levels of abstractions, but in a

general sense we can say that if we reduce operations by 50%, roughly 50% of the

power is also reduced, assuming dynamic power in processing operations is the most

significant contributor. Besides analyzing the high-level algorithm code and reducing

obvious inefficiencies, the most significant technique used in this study is in the

conversion from a floating-point algorithm to a fixed-point one. For real-time

embedded systems, this is widely considered [20]-[23] to be an efficient way to

52

reduce operations across the board in a computation intensive floating-point

algorithm. How this conversion was done is detailed in Chapter 3.

At the system level, the entire dive computer system is analyzed and optimized.

This is detailed in Chapter 5 in the sections on application profiling and on

hardware/software partitioning. This involves first profiling the application in detail,

to determine which are critical in terms of power and performance, and which are not.

It is then determined which portions of the algorithm are to be implemented in

hardware, which in software, and further which portions of hardware need to be

customized or not. Trade-offs between flexibility, performance, area footprint, and

efficiency are part of the ASIP design flow, and are central to reducing power at

multiple levels of abstraction, including the system, architecture, and gate levels.

At the architecture level is where the ISA is designed/selected and the processor

core design/selection occurs. The processor memory system, datapath and control

circuits are all designed in order to best fit the application domain, and provide

maximum efficiency given the application constraints. Included also is the

design/selection of low-level processor firmware, and required toolset as part of the

hardware/software co-design.

At the gate level is where the actual design in HDL comes into play. Choices

made in terms of clock domains used, clock gating design and other techniques are

used to trade-off performance and area and power. Much of this work can be aided

by the sophisticated synthesis tools used in processor design, but even a the HDL

53

level there is some level of control the designer has to inform the tools what the

design goal is. For example, the Xilinx FPGA design tools used in this study contain

complex customization controls to allow the designer to specify how gate-level

circuits are to be constructed. One such control allows the designer to specify

whether to extract intended multiplexers (MUX) from the design. This allows for the

designer to choose whether to use the specific structures coded in HDL, or to possibly

optimize those structures by using MUXs in place of possibly more complicated

logic. There are many such controls, and the user can set up a design goal strategy

such as power reduction, area reduction, or high performance priority, or use a totally

custom strategy where each option is specified explicitly.

54

Chapter 3: Implementation Options and Trade-Offs

In Chapter 1, the GFM application and its related application were discussed in

depth with examples. Input vectors for simulation-only and real-time high-level C-

code implementations of GFM were described and detailed. Lastly, the constraints on

performance, power, and area were defined for an efficient and practical processor

handling GFM calculations. In Chapter 2, the source of energy in CMOS circuits as

well as low-power design issues and techniques were discussed. At this point we

have a good idea of what the GFM algorithm and related application requires, and we

wish to detail what options are available for an efficient implementation.

In terms of processors, we have a spectrum of hardware types, each with

different characteristics and target applications. If we imagine this spectrum as a one-

dimensional line, we can say that on one end we have totally custom hardware and

Application-Specific Integrated Circuits (ASICs), and on the other end we have

General Purpose Processors (GPPs). In between we have a multitude of different

devices, including Application-Specific Instruction Processors (ASIPs), Digital

Signal Processors (DSPs), and hybrid architectures such as GPPs with accelerators

and most recently, GPPs with embedded programmable logic. The hardware options

listed above each have their own trade-offs in terms of performance, area and power,

as well as their related design flows. We will discuss these options in this chapter,

including why each may or may not be a good fit for a GFM-based dive computer.

55

The illustration in Figure 8 taken from [17] shows this spectrum of hardware

options where the relative flexibility, computational performance, and energy

efficiency is compared among the different types. Note how from left to right the

flexibility increases, and from right to left both the performance and the efficiency

decreases. This is a generally applicable illustration, and there are always exceptions.

It is important to note that in recent years many new devices are being made that

cross the boundaries between the different types, and can be considered hybrids made

of one or more of the different types. Recent examples include general-purpose

processors that include pre-defined hardware accelerators. One thing not illustrated

in the figure is the time and cost of development, and we can say generally that costs

increase from right to left, as does development time.

 Dedicated HW ASIP DSSP DSP GPP

Low High

High Low

High Low

Figure 13: Processor HW Implementation Options

Energy Efficiency

Computational Performance

Flexibility

56

Custom Hardware Implementations and ASICsCustom Hardware Implementations and ASICs

We begin here with totally custom hardware and ASIC solutions. With totally

customized hardware, you can typically achieve the highest performance. By this we

mean that a circuit is constructed to do exactly one thing, as efficiently as possible,

and there is literally no overhead in doing other operations or managing other

components within a larger circuit. As a simplest case example, suppose we need

hardware that inverts one input bit, and adds it to another input bit. The hardware

needs two, one-bit inputs A and B, and produces one bit of output X which can be

described by the logic function X = A + B.

If we first consider the most gratuitous use of hardware as an extreme example

of what not to do, we consider that we implement this inverter function using a

general-purpose processor. Being a processor, suppose its hardware has the

capability of processing a variety of instructions, accessing a variety of different

memory elements and structures, as well as accessing input output (i/o) ports and

other internal substructures and components. If we wish to implement our function

X in the GPP, we will first need to program it. The program would involve reading

the two input bits (either from memory or from i/o ports), negating A, then adding it

to B. If we suppose a RISC-type instruction set, we can suppose that reading the two

inputs, negating A, adding A to B, and finally outputting the result to some memory

bit or i/o port, would require roughly 5 or 6 operations. If we consider the time and

energy required in the GPP to fetch the instructions and process them, it should be

57

clear why that solution to the very simple problem involves way more hardware than

is needed. The hardware will be relatively slow for the operation performed, require

way too much power (mostly in overhead), and will take up way too much space than

is appropriate.

The simplest solution might be to use a combination of simple logic gates to

perform the function desired. For example, if we connect the A input to an inverter,

and the B input to an exclusive-OR (XOR) gate, we can connect the output of the

inverter to the other XOR input, and the output of the XOR gate will be the function

X. This solution involves only a few transistors contributing to power, will complete

in drastically less time than would the first solution, and will take up magnitudes less

space.

The idea here is that at least in the case of a very simple operation needed,

custom hardware can dramatically increase performance, and reduce area and power.

Since we are interested in running a complex algorithm with real-time bounds, this

example is a bit lacking, but we can extrapolate the idea to a more appropriate

discussion. For the GFM algorithm, we know that thousands of operations need to

complete in the shortest time, at the lowest power, and using the least amount of

space as possible. Although we will get more into profiling results of GFM in

Chapter 5, we can note here that on a the SimpleScalar RISC-based simulator [27]

one GFM time-step (in a single-precision floating-point implementation) requires

over 5000 different operations. Since we want to perform 2611 time-steps every 6

58

seconds, that means we need to complete over 13 million operations every 6 seconds.

Now, performing these operations in a digital circuit is not the issue, rather, the

issue is performing them efficiently. If we consider making one totally custom

hardware implementation not involving some sort of processor, you can imagine that

this circuit would be extremely large in area. That fact alone would probably

disqualify it as an option, but even if not, it suffers from other problems. The circuit

would be very complicated to design, and would most likely be very inefficient. If

we are considering only combinational logic circuits without any sort of instructions

or even clocking, we can certainly say that a custom hardware circuit implementing

over 13 million operations would probably be the worst design option.

In between might be something having the processing capabilities like a GPP,

but with more efficiency like a custom combinatorial hardware circuit. This first

option we want to discuss is the ASIC. ASIC designs take into account that many

times the algorithm or operation that needs to be performed is complex in nature, but

requires a degree of efficiency. For example, many papers exist that discuss custom

hardware solutions for encryption algorithms [28], and in virtually all cellphones you

will find ASICs made for display processing, audio or video decoding, and radio-

frequency (RF) signal processing.

An ASIC is generally an IC that may be configurable but not programmable in

the same sense as a GPP. The hardware is fixed for one application, and so in that

way it has no flexibility. It is typically optimized for performance and power for the

59

one target application only. Its performance is typically the highest of any other

implementation, and it is generally the most energy efficient as well. For GFM, due

to its complex nature, large number of operations required to be performed during its

most basic operation (the time-step), and the fact that many of the operation types are

repeated over and over within the time-step, we can say that an ASIC implementation

is not ideal or even desired, and that some sort of processor would be more ideal for

GFM.

Application Specific Instruction Processors (ASIPs)Application Specific Instruction Processors (ASIPs)

As ASIP is closest to the ASIC end of the spectrum, but with an ASIP we

introduce processing instructions. As the name suggests, an ASIP is an instruction

processor designed specifically for one application. The idea is that an Instruction Set

Architecture (ISA) and Processor Architecture (PA) are both optimized and custom

designed for the target application. In this way, the hardware can be extremely

efficient and higher performance as compared to a general purpose processor, while

offering a bit more flexibility than an ASIC. Application profiling is very important

in designing an ASIP, since the goal is to perform the operations of a specific

algorithm efficiently.

To understand more fully how an ASIP can provide more efficiency than the

GPP end of the spectrum, consider an application that requires programmability and a

processor core as the base hardware. If we start with a RISC-type processor like

60

MIPS [29], there might be 20 or more instructions available. Consider that a certain

application really only makes use 5 of those instructions. In that case, the overhead

of being able to fetch, decode, and process all the unused instructions is waste, and

could be eliminated.

By profiling the application we can determine which instructions are used, and

used most frequently. Suppose further that through profiling we find that there is a

set of two operations that always execute in pairs, and very frequently. For example,

suppose adding two 8-bit integers is always followed by multiplying two different

numbers. These two operations could be combined into one instruction, and a

Custom Functional Unit (CFU) could be designed to perform the operation in parallel

instead of in series. Custom instructions and CFUs are common characteristics of an

ASIP design, although there are many more techniques that exist [30][31]. TMS-

320C2x processors made by Texas Instruments include special addressing modes

designed for FFT applications. This is an example where a DSP (explained in the

next section) was designed to include application specific features. In this way the

DSP chip is more like an ASIP since the custom addressing mode is not generally

useful, it is useful only for a specific application. There are countless studies on all

parts of the design space for ASIPs, including those on instruction set selection for

ASIPs [32]-[34], ASIP designs for low power , ASIPs for specific applications, and

automatic ASIP generation techniques.

It should be noted that a considerable amount of work has been done over the

61

last decade concerning all parts of the design space for application specific instruction

processors. As described in [17], an application-specific instruction processor yields a

balance between the optimal design of a wholly hardware specific implementation

and a general-purpose processor. Typically the design processes involves multiple

phases. The first involves obtaining detailed profile information [17][20][21][35] on

the optimized algorithm. The application profile information is used to inform design

decisions, and identify where enhancements can be made for the application. Given

that profile, an existing architecture can be customized to more efficiently meet the

specific workload of the application domain. Instruction-set extensions (ISEs) and

CFUs can further increase the performance, and work on hardware-software co-

design [17][20][21] addresses the issue of producing new software tools for new

instruction sets and otherwise modified instruction set architectures. Application-

specific functional units (AFUs) can be added to implement ISEs.

Work has also been done on application-specific registers and register

structures, and application-specific floating-point units (FPUs) for custom

architectures. In addition the pipeline, datapath and control components are also a

necessary part of ASIP design. If an existing core is being used, much of this work is

already done, although typically modifications are made. The storage and memory

networks can also be customized for a specific application, and again profile

information is used to direct design decisions. Work has been done on automatically

generating the various topologies and configurations mentioned above. In particular,

62

automatic instruction set extension (ISE) identification and generation programs have

been researched and have been identified as being a crucial part in the early stage of

the pre-architecture design phase. Tools even exist that can go directly from

application source code to automatically generate an ASIP HDL implementation,

although these methods rely somewhat on pre-defined component libraries, and other

fixed parameters. Finally, low-power VLSI and HDL design techniques [17][36] are

used typically in order to reduce the system frequency, capacitance and voltage

requirements. It is also noted that typically the ASIP design process is iterative, in

that design changes often require another pass at earlier stages in the design before

finding the optimal configuration.

It should be noted that the term ASIP does not indicate any specific processor

architecture. In fact, an ASIP can be designed to use existing ISAs such as RISC,

CISC, or VLIW, or it can be designed with a totally new architecture. ASIP simply

refers to the fact that

Domain Specific and Digital Signal Processors (DSSPs, DSPs)Domain Specific and Digital Signal Processors (DSSPs, DSPs)

Domain Specific Signal Processors and Digital Signal Processors are another

class of processor hardware more toward the GPP end of the spectrum. These

processors are not made specifically for one application, rather, they are optimized for

a certain domain of applications. These processors are typically programmable, and

contain specialized instructions specifically useful for the application domain.

63

Examples include the C5000 family from Texas Instruments and the Sharc family

from Analog Devices.

General Purpose Processors (GPPs)General Purpose Processors (GPPs)

General purpose processors are the most widely used, and most generally

applicable processors available. GPPs are designed for a variety of applications, and

not optimized for any one specific application, or even application domain. They

offer the highest flexibility, since they can be programmed to do almost any task,

given that the specific device has enough memory and processing capability for the

specific task. GPPs also exhibit the quickest development time and lowest cost.

There is generally no hardware customization needed, and because they sell in high

volumes, they are relatively inexpensive. From a practical point of view, they also

benefit from having very well documented uses. There are literally millions of on-

line resources providing example code, application notes, example system designs,

and other useful information.

Examples of GPP devices include the TI MSP430, Atmel's AVR, Microchip's

PIC, NXP's ARM-based microprocessors, Freescale's HC11, and the famous Intel

4004, 8080, and 8086 processors. Still more exist from Fujitsu, Samsung, Epson,

STMicroelectronics, Renesas, NEC, and others. Processors from these companies are

in everything from refrigerators to space shuttles, and number in the trillions sold

worldwide. They generally come in 8-bit, 16-bit, 32-bit, and 64-bit configurations,

64

and come with a variety of peripheral modules. Peripherals typically include

communication interfaces like UART, SPI, and I2C, timing modules, analog-to-digital

(A/D) and digital-to-analog (D/A) interfaces, general-purpose i/o ports, and more.

Using a GPP for a GFM-based dive computer is not a bad idea, provided that

there exist microprocessors that can satisfy all the constraints of the system. A study

conducted by this paper's author suggests that there are not many, if any,

microprocessors that can process the large amount of information GFM requires,

within the real-time bounds required, and at a sufficiently low-power as to satisfy the

power and area constraints for a dive computer. Even if one exists that can just

satisfy the requirements, still more benefit can be achieved by using a more

customized hardware that offers higher performance and more energy efficiency.

The time-saving aspect of developing with GPPs cannot be emphasized enough,

and how the advent of high-level computer languages has played a big role. High-

level languages like the C Programming Language allow programmers to develop

algorithms and code modules that, if designed to be portable, can be used on a variety

of microprocessor with little re-design or effort porting the code. Since high-level

languages can abstract the details of hardware, the code can be used on virtually any

GPP as long as the low-level hardware-specific routines are ported. An I2C routine is

a good example of this. I2C is a communication interface that uses two lines, one for

data, and for a clock. The interface uses addressing to select different IC's on the bus,

and communication is bi-directional. A high-level I2C routine could be written

65

entirely without any details on the specific hardware being used, and the user would

need only to specify which i/o ports are used for the two lines, and to configure the

low-level routines to access those ports. I2C is only one example and in fact there are

thousands of portable routines available on-line.

Combining the ease-of-use of portable high-level routines, and the general-

purpose nature of GPPs, designs can be completed in relatively little time or cost,

although while sacrificing efficiency. For many applications efficiency is not an

issue, and a GPP is a great fit. For example, if you were to design a vending machine

program that processed button inputs from the user, and then sent a signal to output

the product purchased, energy efficiency or real-time performance may not be a high

priority. If the user gets their product a few seconds later than they expected, for

example, it will most likely not be an issue. We can also say that whether a vending

machine processor uses 1mA or 2mA while processing user input may not be a high

priority. In recent years, energy efficiency for all electronics has become a general

priority, but we can say the importance is much higher in a battery-operated safety-

critical medical device, for example.

Processor ArchitecturesProcessor Architectures

A lot has been said in this chapter about different architectures at a high-level,

but there is one thing that has been only mentioned in passing. This is the idea that we

need to use some sort of processor architecture for the GFM algorithm. If we are

66

going to use a processor to implement GFM in the low-power dive computer

application, we need to understand a bit about processor architectures. Whether we

use an ASIP, DSP, or GPP, we need to have an understanding about different types of

processor topologies, and why they are used. In this section we describe some of the

most commonly used processor architectures and concepts.

Processor Architectures - RISC and Pipelining

We can begin with what is called a Reduced Instruction Set Computer (RISC).

A RISC architecture is one that, as the name suggests, is based on a simple instruction

set. The concept goes all the way back to the 1970's and is still used today. The idea

is to use a very simple instruction set including simple arithmetic and logical

operations that operated on registers, and to use special load and store instructions to

operate on memory. Since memory accesses are slow compared to register accesses,

this allows most operations to be performed on registers rather than memory. Using

very simple, 1-cycle instructions allows the processor to run at higher frequencies,

and make it easier to design pipelines, explained in the next paragraph. Examples of

RISC assembly instructions include: load, store, add, subtract, multiple, divide, rotate

bits left, rotate bits right, and many more.

A pipelined processor is one that runs instructions in parallel (as much as

possible) rather than in series, making use of hardware components that would

otherwise be unused. Pipelining is a technique to achieve high Instruction Level

Parallelism (ILP), which can increase performance of an application by a factor

67

greater than or equal to the number of stages in the pipeline [29]. An analogy that is

very intuitive to understand is that of washing clothes. If you break up the task is

stages, you can say that first you need to wash, then dry, then fold the clothes. While

you are drying, you can put another load in the washer, and while you are folding,

you can put the wet clothes in the dryer. If each operation takes 10 minutes to

complete, and you perform them in series, it would take 3000 minutes for 100 loads,

for example. On the other if you pipeline the tasks, as described above, then you will

complete 100 loads in roughly 1000 minutes, since the pipeline effectively allows you

to wash, dry, and fold each load in an average of 10 minutes. The serial washing time

of 3000 minutes is roughly divided by 3 (the number of stages in the pipeline), for a

pipelined total of about 1000 minutes.

Unfortunately in practice, although pipelining makes operations much more

efficient, there a whole host of issues that need to be handled in real designs. In real

designs, there can be dependencies on one stage to the next, and so some operations

cannot be done in parallel, unless some sort of modification is made. These issues are

called hazards [29], and related hardware is called hazard detection and elimination

hardware. There are various types of hazards including data hazards, control

hazards, and structural hazards, and each has own consequences and solutions.

A good pipeline design takes into account all the hazards that need to be accounted

for. The pipelined MIPS type processors are a good example of pipeline design, and

are featured in various computer architecture textbooks. A modern example of a

68

popular pipelined RISC type processor is the ARM7 ARM9, and ARM11 family of

processors, used in everything from the latest hand-held gaming systems to the latest

touch-screen smart-phones. RISC designs emphasize simplicity in instruction set and

hardware, many registers, few addressing modes, and high performance.

Processor Architectures - CISC

CISC architectures refer to a Complex Instruction Set Computer (CISC), where

the instructions handle multiple operations, as opposed to one simple operation.

Because each instruction performs more operations, they generally contain more

information, and are more complex to implement than simpler RISC instructions. As

example might be for one instruction to perform an addition, as well as a logical bit

shift operation. At the time before advanced compiler design, it was thought that

hardware was easier to design than compilers, so CISC instructions were meant to

perform as many operations as possible in fewer instructions. It was also expensive

to have large program code space in processors, however today it is not as much of a

problem. Later, CISC was adapted with the goal of making it easier to adapt high

level languages like C, and to make hardware analogs to the high level constructs like

procedure calls, and loop control. The Motorola 68K series microprocessors are an

example of CISC architecture. CISC architectures emphasize small code space and

speed, extensive addressing modes, few registers, simple compiler design, with more

emphasis on hardware.

69

Processor Architectures – VLIW

VLIW refers to computers designed with Very Long Instruction Word (VLIW)

architectures. This refers to the idea of creating very long instructions with multiple

operations per instruction, to achieve higher ILP. This relies on the underling

architecture having multiple functional units available for use, and on efficient

multiple-issue static scheduling of instructions at compile time. Compilers for VLIW

architectures are generally very complex, while the hardware is relatively simple.

For example, suppose a processor core has 4 arithmetic and logic units (ALUs),

and 1 memory. A VLIW instruction might include 1 add, 1 subtract, 1 bit shift, 1 bit

negation and one load operation, all in one instruction. By scheduling operations

effectively, a VLIW compiler can produce code that makes fullest advantage of the

VLIW hardware for a high level of ILP and efficiency. As with pipeline designs, the

challenge is to make sure the greatest amount of hardware is being utilized on each

clock, so that the desired efficiency is achieved. An example of a modern VLIW

architecture is the IA-64 architecture used in the Intel Itanium processor. VLIW

architectures emphasize simpler hardware and high parallelism, but with very

complex compiler design required.

Processor Architectures – DSP

Digital Signal Processors (DSPs) are a class of processors that are optimized for

high throughput computations on large amounts of data. Many DSPs operate on

70

streams of data, and are optimized for arithmetic operations on those streams. DSP

does not specifically associate itself with any specific architecture, and so a DSP is

not, for example, always RISC, or CISC, or VLIW, although in fact DSPs exist that

can be categorized as such. DSPs are processors, in that they do process instructions

and operate on data, but compared to a GPP, a DSP is typically not designed to

handle peripheral operations, or control flow, rather, it is mainly for processing

arithmetic operations. DSP instructions are typically simpler than GPP instructions,

and typically use fixed-point formats as opposed to floating-point. DSPs use integer,

fractional, and custom numeric formats whereas GPPs typically use standard integer

and floating-point formats. Most instructions are based on multiply-accumulate

(MAC) operations and are scheduled by the compiler, while GPPs many times use

more complex, dynamically scheduled instructions.

All this being said, there are a few types of DSP architectures that are more

common than others. DSP designs based on dual MACs, SIMD, VLIW, and

superscalar DSPs are common. A dual MAC design uses two multiply-accumulate

units run by one instruction, in order to process incoming data in parallel. SIMD

refers to running one single instruction on multiple data values, and superscalar and

VLIW were discussed previously. In general, DSP architectures emphasize

simplicity in programming, complexity in hardware, real-time results and high

throughput on large amounts of input data. Various custom DSP designs have been

developed, in order to very closely match the needs of an algorithm domain with

71

more customized hardware than if a GPP were used. Examples include the

TICC55x SIMD machine, the TigerShark VLIW, and ZSP superscalar processors.

Fetch Order, Cache, and Order of Execution

The earliest processors ran all instructions in order, as written by the assembly

or machine code programmers. Many modern processors have out-of-order

execution, and a host of newer architectures that correspond to out-of-order

processing. Instructions can be fetched in order, possibly more than one at a time,

then entered into scheduler hardware, where the decision to execute the instruction is

made based on the availability of hardware modules, and based on dependencies that

might exist between instructions. Out-of-order processors are typically superscalar,

and have multiple ALUs, memories, etc. These processor also employ cache, either

for instructions, for memory accesses or for both. Cache is used as a small, fast

memory used to speed up operations that would otherwise have to access larger

slower memory. For example a processor might be designed to access a hard-disk,

but for faster operation and less slow memory accesses to the hard-disk, a small static

RAM can be used as a cache, and can increase efficiency. Memory hierarchy design

is a topic in itself, and will not be covered in depth here, except to say that the

memory system design can be just as important as any other decision in processor

system design. For small ultra-low-power embedded processors, typically only some

form of EPROM, EEPROM and RAM are used, and larger memory structures

utilizing multiple levels of memory are not an issue. On the other hand though,

72

silicon is becoming increasingly smaller, and even low-power processors such as

some ARM core based devices include pipelined designs with cache memory. The

textbooks on computer architecture [29] by Hennessey and Patterson are great

resources to learn more about memory design and are offered here as reference. As

we will see in Chapter 5, in this study cache memory is not needed in order to design

an efficient processor for GFM.

Floating-Point to Fixed-Point ConversionFloating-Point to Fixed-Point Conversion

This sub-section is about a very important software implementation technique.

If done correctly, the technique of converting floating-point algorithm code to fixed-

point can yield a design with higher performance and less area and power. In fact,

although this technique is technically a software technique, and can be done on its

own without hardware customization, it can also be a part of a hardware/software co-

design flow (to be discussed in the next chapter), where hardware is customized with

the resulting fixed-point algorithm in mind. It is certainly the case that converting the

GFM algorithm to fixed-point is a good choice, and the technique will be detailed

here.

Numeric Representations

The term fixed-point [20][21] refers to a numerical representation where the

position of the decimal point is fixed relative to the bits in the number. For example,

the binary number 0101 can be used to represent the decimal value 5, if we assume

73

the decimal point is fixed to the right of the right-most (least significant) bit. The

same value 0101 can also be used to represent 2.5, if we assume the decimal point is

fixed to the left of the same bit. Fixed-point numbers can be signed or unsigned, but

the main idea is that the decimal point is fixed in place. A fractional form of a fixed-

point number simply refers to a fixed-point number where all bits are understood to

represent bits in behind the decimal point, so that there is no integer part.

Fixed-point format is widely used across the board in terms of hardware

implementation options, including GPPs, DSPs, and even ASIPs and ASICs. It

allows for simple hardware to perform arithmetic operations on these values in a way

that takes less area, time, and energy than floating-point formats. The reason is that

fixed-point hardware does not need to know or even care about the location of the

decimal point. For example, if you want to add binary numbers 0100 and 0110, you

can assume the value is an integer (non-fractional) and add them for a result of 1010.

The corresponding hardware works the same way. Using a basic 4-bit adder digital

logic circuit, you can input both numbers and get that result. Now if in fact the

decimal point was understood to be in front of the first bit (from the right), that does

not change the answer.

To see this more clearly, note that adding binary integers 0100 and 0110

amounts to adding decimal 4 and 6 for a result of 10. This matches the binary value

of 1010 we got from adding the binary numbers. Now suppose there is a decimal

point such that we are adding values 010.0 and 011.0. In decimal, we are adding the

74

numbers 2 and 3, and we should get 5. If we take the same result 1010 and place the

decimal point in the same position in the result, we see that in fact 101.0 is still

correct, having the value of 5. The point is that on a basic level, fixed-point

representations require only simple binary arithmetic hardware, and as we will see

that is much simpler than floating-point hardware. As we will see, there are

enhancements that can be added to fixed-point representations and to the

corresponding hardware, but on a basic level the hardware is as simple as described

here. For example, in fixed-point implementations, guarding, rounding, truncation

and saturation play an important part in defining the underlying ALU operations.

Fixed-point formats are denoted as QD(m.f), where D refers to the number base (2 for

binary), m is the number of integer magnitude bits, and f is the number of fractional

bits. Using this notation, Q2(16.4) refers to base 2 binary data with 16 bits integer

part and 4 bits fractional.

The term floating-point (f.p.) refers to a fractional numerical representation

where the decimal is not in a fixed position. In other words, the decimal point

“floats” within the value, and the meaning of a floating-point formatted number

depends on knowing its location. Floating-point representation reserves some of the

bits in the value for a fractional integer part called the mantissa, and some for an

exponent. A popular format is the standardized IEEE 754 Single-Precision Floating-

Point Format [37]. This format uses 1 bit for the sign, 8 bits for the exponent and 23

bits for the fractional part. There is also a bias on the exponent, a value of 127, and

75

special encodings for zero and infinity. Note that performing arithmetic on floating-

point numbers means handling the various parts of the value separately, and floating-

point hardware is relatively complex.

Although floating-point hardware requires more complex operations than fixed-

point, it can be efficiently parallelized so that multiple f.p. operations can take place

at once. Pipelined floating-point ALU designs exist that break up the various

operations in floating arithmetic into pipeline stages. For example, in [36], a FPU for

add and subtract operations breaks up the operation into 5 different stages including

sub-normal detection, pre-normalization, add/subtract, post-normalization, and

exception handling. This sort of pipeline allows otherwise cycle intensive f.p.

operations to be completed on each clock, when many such independent operations

need to be performed and can be correspondingly started on each clock. Pipelined

floating-point multiplication and division can be much more complex than addition

and subtraction, and pipelined designs exist for those operations as well.

When speaking of floating- and fixed-point numerical formats, we need to also

understand a bit about noise, distortion, dynamic range, and precision. The dynamic

range of the numerical format refers to the maximum value - the minimum value. For

example, for 8-bit data, the dynamic range is 255. IEEE 754 Single-Precision

Floating-Point Format has a range of 3.4e^38 – 1.18e^-38. Range for fixed-point

numbers depends on the number of bits, and how many bits are for integer and for

fraction. The precision is the smallest value that can be represented, for example the

76

number 001 for integer systems. Distortion is when the input to output function is

nonlinear. For example, when data overflows from arithmetic operations, truncation

can introduce distortion since the true answer should have been different.

When using floating point formats, you get a very high dynamic range and

precision, but also slower and more expensive and complicated hardware. With

fixed-point, you get low range and precision, but very fast and cheap hardware. It

depends on what the application requires as to whether to use one or the other. For

example, if a system is to be built that accepts integer data from 0 to 100 as input and

always produces integer data from 0 to 10 as output, there would be no reason for

using floating-point hardware. On the other hand, some applications require many

high dynamic range, high precision calculations to be performed quickly, and

floating-point might be the only possible solution.

Conversion

We have seen how different numeric formats give different dynamic range,

precision, and require more or less complex hardware. There is another point then

that needs to be discussed, which is whether or not to convert an algorithm from

floating-point to fixed point. Of course, the decision is based on whether or not the

increased range and precision is required by the application, and whether or not the

benefit of the more complex hardware outweighs its cost. Converting from floating-

point to fixed-point is complicated, but if done well, can produce a much more energy

efficient implementation with smaller and faster hardware, with only modest

77

reduction in accuracy. As part of a custom hardware design flow, converting to

fixed-point involves some work on the algorithm up-front, but with the benefit of

reducing design time in lieu of having to design complex floating-point hardware.

If we were able to use infinitely many integer and fractional bits, we could

easily convert from floating- to fixed-point, but the issue lies in the fact that we

cannot. We have to choose how many bits to use for the integer part, and how many

for the fractional part. In other words, we need to set the inherent range and precision

in the system when converting to floating-point. This can be daunting at first, since,

when working with floating-point in a high-level language, most of the underlying

details of the numeric format are not even paid attention to. In a fixed-point system,

the choice of format determines the accuracy of the system outputs. Given a finite

number of bits, either we choose a high range, or high precision, or some trade-off

point, but in any case we usually end up with less accuracy as compared to the

floating-point version. How much of a difference is noticeable and acceptable is up

the designer.

One part of this conversion process is called scaling. Scaling refers to the idea

that once you constrain all your values to a fixed-point format, you now need to make

sure results of intermediate computation do not exceed the maximum or minimum

values of the format. For example, if the fixed point format is 4 bits integer, and 4

bits fraction, and you want to multiply 5 times 5, the result is too large to fit in the

format. The problem can be fixed in various ways, one being to make make sure all

78

the values input to that particular multiplication never result in an overflow. If certain

values or intermediate values become too large in the process of performing

arithmetic operations, then those values can be scaled such that they do not overflow

the bounds of the numeric format.

As an example, consider that in a block of code from a program, you want to

multiply three numbers A*B*C. Suppose the numeric format is Q2(8.0), 8-bit integer

data. Now, if the values of A, B, and C all range from 0 to 2, the largest result is 8,

which is well within the range of an 8-bit integer. The problem arises when you have

three values that can each range from 0 to 125, where the largest result of A*B*C

cannot fit within the numeric format. What you can do then, is to scale one or more

of the variables A,B,and C, so that given the typical range of values for the three

variables, the result of this operation never overflows. For example, if all values were

scaled so that they were all 6 or less, 6*6*6 would fit within the format.

Of course with fractional data, scaling becomes more difficult since you are

dealing with possibly very small data as well as large data, and scaling can effect the

accuracy and precision of results. Although you might scale values initially so that

arithmetic results do not overflow, you eventually may need to scale values back to

put the number back in the correct format. If you have three numbers A, B, C all in

Q2(18.14) format (32 bits with 18 bits integer), and you scale them all by dividing by

100, then you multiply all of them together, you need to multiply the result by 100 to

79

get the true answer back. By doing this, you can allow the operations to take place

without overflowing or otherwise violating the numeric format during intermediate

operations, and by choosing the scale factors carefully, you can optimize how much

range and precision you get out of the final answer. Note that this is all in an attempt

to get as much range and precision as possible out of a fixed-point format using

simpler and cheaper hardware.

To do this, theoretically you could monitor (by profiling) the value of each

variable and each intermediate result, while iterating through different scale factors

for each variable and arithmetic result, to achieve the highest possible optimization.

It is very important to not that each time to introduce a scale factor operation, you

introduce more cycles in the operation of the processor running the algorithm. This

means to optimize scaling you need to do it as little as possible, and in just the right

places in the algorithm. In addition, the input vectors used to choose the scaling

factors have to be robust enough to allow you to choose the right values and the right

variables to scale. The method used by the author in this study was to run the GFM

algorithm and output variable and intermediate result values to a file while running

the program. Values that had very large (or small) values or intermediate operations

that resulted in very large (or small) values were scaled appropriately. At each

iteration, the scale factors were refined so that eventually all variables and

intermediate values took full advantage of the numeric format, never overflow or

violate the format given valid input data, and so that results are as accurate as

80

possible. The GFM algorithm was in fact converted from floating-point to fixed-

point in this study. The resulting format used was Q2(18.14) with various scale

factors introduced into the code on certain variables and after certain intermediate

results of arithmetic operations. The efficacy of this transformation will be discussed

more in Chapter 5.

81

Chapter 4: Hardware/Software Co-Design and Design Flows

In the previous chapter, it was hinted at that an ASIP solution best fits the GFM

algorithm and dive computer application. It will become more clear in the next

chapter why that is, and for now we turn our attention to a related topic –

hardware/software co-design. Hardware/Software Co-design refers to the fact that

when a customized processor is designed, it requires not only hardware design, but

also software design, and in fact they need to occur concurrently particularly within

the design flow of ASIP, or DSSP/DSP. This chapter will explain a typical design

flow for ASIP type hardware, while clarifying what is meant by hw/sw co-design and

why it is important.

ASIP Design FlowASIP Design Flow

There are many ways to describe the design flow of an ASIP, but the one

chosen here and used in this study is as described in [17]. The design process is one

that includes starting with design inputs, partitioning the design between HW and

SW, following parallel paths between HW and SW design, and ending with

integration and testing. We can visualize this as given in the diagram in Figure 14.

Note that both the HW ans SW design flows start with a specification, then either

modeling or programming, simulation, and eventually implementation. The arrows in

between the HW and SW design flows illustrate the point that HW and SW need to be

designed concurrently, and in fact both sides influence and dictate the design of the

82

other side. The most clear example of this is that of when an ISA and firmware is

defined for the hardware, the programming usually has to change to make full use of

that choice. If, for example, in hardware a module is designed to perform division as

on operation, software needs to be re-written so that division is not done in software,

but rather by invoking the new hardware module. In the case of an ASIP, where

custom modules, memory structures, and instructions are designed for a specific

application, it is required that for the most efficient design that a HW/SW co-design

process is followed.

Under this umbrella of HW/SW Co-Design are the topics of firmware design,

benchmarking, application and instruction set profiling, requirements specification,

and of course all the topics falling under the processor core design. An ASIP design

Figure 14: HW/SW Co-Design Flow

83

typically involves multiple teams, each of them containing experts in each sub-topic,

utilized in order to arrive at the most efficient design possible. Experts from both

ends of the spectrum including software design and programming, processor design,

application profiling, firmware design, integrated design environment (IDE)

designers, and even VLSI designers all can have inputs into an ASIP design. The

goal is to accurately define and design hardware for the specific application such that

no other implementation, except possibly a full ASIC design, can compete in terms of

performance and energy efficiency.

In recent years a good deal of effort has gone into designing automated IDEs

that can efficiently profile an application, define and implement custom hardware and

firmware systems, and produce an ASIP design automatically. Some tools available

use so-called architecture description languages (ADLs) for use in describing higher-

level architectures, so that different options can be iterated through and to eventually

arrive at the most optimal architecture for a given application. These tools are

extremely expensive, but can reduce the design time considerably compared to a

totally manual design.

For example, one such product quoted by the author of this paper was on the

order of $50,000 for a single license. This cost comes along with a high learning

curve to learn the tools and make efficient use of them. This means such tools can in

fact be out of reach for many designers, either because of the time-line needed to

learn the tools, or because of the associated cost. Another point is that these tools rely

84

on somewhat pre-defined architecture options, and so can actually be limiting in

terms of their capability to output efficient designs for specific applications. For

example, the Processor Designer tool [38] from CoWare allows a designer to specify

the number of stages and other options within a RISC-type pipeline design, in order

to find the most efficient implementation. Another tool performs analysis on high-

level C-code in order to automatically decide what custom instructions can be

implemented to increase efficiency.

85

Chapter 5: Optimizing Hardware for GFM

SummarySummary

In this chapter a specific design for optimizing hardware for the Gas Formation

Model will be presented. The chapter will be loosely organized following the ASIP

design flow described in Chapter 4 and illustrated in Figure 14. Because the design

flow is iterative, and moves back and forth between hardware and software design,

the information here will not be entirely linear. Information will be presented on each

relevant section, and then we will revisit various sections as required. This chapter

starts with information on high level application profiling, then hardware/software

partitioning and system design, followed by low level profiling. Note that all that was

done using the algorithm in its original form as a high precision floating-point

routine. Later the results of floating-point to fixed-point conversion are given,

followed by fixed-point profiling results. From the large amount of profile

information, later sections discuss design choices made at an architectural level, in

terms of instruction set and firmware design, processor core architecture, memory and

i/o system design, and toolset design. All this is part of the hardware/software co-

design flow described in Chapter 4.

86

High-Level Application Profiling (Floating-Point)High-Level Application Profiling (Floating-Point)

In Chapter 1, we explored the application itself, and defined performance,

power, and area constraints. Although we know the application is relatively

demanding, we need a more concrete measure of how demanding it is, in order to be

able to select a design path for customizing hardware. In addition, we need to make a

reasonable decision in terms of which portions of the program to accelerate with

custom hardware. These choices are made by doing thorough application profiling,

and this section will describe results of such profiling, and decision made based on

those results.

Application profiling has multiple uses. At a high level, profiling of the high

level language version of the algorithm can help roughly identify which instructions

are executed most often, and correspondingly where hardware acceleration may help

optimize the system. There is a rule of thumb mentioned in [17], termed the 10/90

rule. What this refers to is that for application that can benefit from acceleration by

hardware, many times 10% of the code is executed 90% of the time, and so in that

case the code that represents the most executed 10% is the portion you want to focus

on accelerating. Of course whether there is a block of code that fits those numbers

exactly depends on the application, and the specific ratio is not important, but the idea

is that is that you want to identify which code needs to be optimized or not. In fact

the GFM algorithm code running inside a dive computer falls into this category and

so is a good candidate for acceleration.

87

We can begin by looking at profiling results on the high-level C-code in full

precision floating-point format. Using this program implementation, each line of C

code can be given a count each time it executes during the dive sets 1 through 4 given

in Chapter 1. Recall that each dive includes the real-time state computation that gives

the free gas related to the specific dive being simulated, as well as all the prediction

calculations run at each and every time-step as explained in Chapter 1. This typically

amounts to millions of time-steps being run over the course of each dive. By looking

at line counts for each line of C-code, we can see if there are blocks of code that are

good candidates for acceleration.

At this point it is important to take a look again at the dive computer as a

system, at a higher level. We will be deciding here that it is the entire base GFM

algorithm routine that needs to be accelerated, but we need to take a step back to

understand why. Recall that dive computer performs many functions, including

storing dive data in non-volatile memory for later retrieval, controlling and displaying

information on the output display, and processing user input. Because the author

works for a dive computer manufacturer, it can be reported here that for a top-of-the-

line product like the OC1 made by Oceanic [39], there are over 50,000 lines of

compiled and hand-written assembly code. The code for the GFM routine is less than

100 lines of C-code. When compiled, the actual count of assembly lines of code of

course depends on the compiler and processor used. If we say that each line of C-

code converts to 50 lines of assembly (to be extremely conservative), still we can say

88

that the GFM algorithm makes up only 10% of the code. From compilation results

using an IAR C-compiler for an ARM7TDI 32-bit target device and for a 16-bit

MSP430 target, with full optimizations on, the floating-point version program code

compiles to under 4kb in both cases, whereas the entire dive computer product

compiles to well over 100kb of code.

Dive sets 1 through 4 from the standard dive profiles represent 96 different

dives, spanning thousands of minutes and literally trillions of lines of executed c-

code. The dive descriptions were given in Chapter 1, and here we will analyze the

instruction profile. In a custom, automated program designed for profiling, each line

in the basic GFM routine's main loop (after initialization), was given a line number.

Each time the line was executed a count was incremented corresponding to that line.

The results from a selection of the 96 dives are given in Figures 15 - Figure 24. Note

that each figure includes 4 dives, representing dives out to the NO-D limit, out to ½

the NO-D limit, and with and without a safety stop of 3 minutes at 15 ft. Analysis of

the figures follows.

89

Figure 15: Instruction Profiling Results, 21% FO2, 180ft

0 5 10 15 20 25 30 35
0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

21% FO2, 180 ft

NOD, no SS
½ NOD, no SS
NOD, SS
½ NOD, SS

Code Line #

To
ta

l C
ou

nt
 F

or
 D

iv
e

Figure 16: Instruction Profiling Results, 21% FO2, 140ft

0 5 10 15 20 25 30 35
0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

180000000

21% FO2, 140 ft

NOD, no SS
½ NOD, no SS
NOD, SS
½ NOD, SS

Code Line #

To
ta

l C
ou

nt
 F

or
 D

iv
e

90

Figure 17: Instruction Profiling Results, 21% FO2, 100ft

0 5 10 15 20 25 30 35
0

50000000

100000000

150000000

200000000

250000000

21% FO2, 100 ft

NOD, no SS
½ NOD, no SS
NOD, SS
½ NOD, SS

Code Line #

To
ta

l C
ou

nt
 F

or
 D

iv
e

Figure 18: Instruction Profiling Results, 21% FO2, 60ft

0 5 10 15 20 25 30 35
0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

21% FO2, 60 ft

NOD, no SS
½ NOD, no SS
NOD, SS
½ NOD, SS

Code Line #

To
ta

l C
ou

nt
 F

or
 D

iv
e

Figure 19: Instruction Profiling Results, 21% FO2, 40ft

0 5 10 15 20 25 30 35
0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

21% FO2, 40 ft

NOD, no SS
½ NOD, no SS
NOD, SS
½ NOD, SS

Code Line #

To
ta

l C
ou

nt
 F

or
 D

iv
e

91

Figure 20: Instruction Profiling Results, 20% FO2, 180ft

0 5 10 15 20 25 30 35
0

50000000

100000000

150000000

200000000

250000000

30% FO2, 180 ft

NOD, no SS
½ NOD, no SS
NOD, SS
½ NOD, SS

Code Line #

To
ta

l C
ou

nt
 F

or
 D

iv
e

Figure 21: Instruction Profiling Results, 30% FO2, 140ft

0 5 10 15 20 25 30 35
0

50000000

100000000

150000000

200000000

250000000

300000000

30% FO2, 140 ft

NOD, no SS
½ NOD, no SS
NOD, SS
½ NOD, SS

Code Line #

To
ta

l C
ou

nt
 F

or
 D

iv
e

92

Figure 22: Instruction Profiling Results, 30% FO2, 100ft

0 5 10 15 20 25 30 35
0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

450000000

30% FO2, 100 ft

NOD, no SS
½ NOD, no SS
NOD, SS
½ NOD, SS

Code Line #

To
ta

l C
ou

nt
 F

or
 D

iv
e

Figure 23: Instruction Profiling Results, 30% FO2, 60ft

0 5 10 15 20 25 30 35
0

500000000

1000000000

1500000000

2000000000

2500000000

3000000000

30% FO2, 60 ft

NOD, no SS
½ NOD, no SS
NOD, SS
½ NOD, SS

Code Line #

To
ta

l C
ou

nt
 F

or
 D

iv
e

93

In the profiling results above, we see that over the course of the dives, the GFM

routine (including prediction calculations at each time-step as defined in Chapter 1)

amounts to hundreds of millions of executions of particular lines of code within the

GFM time-step routine. For example in Figure 24, lines 8 and 9 were executed

between 1.4 and 2.6 billion times over the course of the length of the dives. We do

see some differences with the different dives within each figure, but those differences

are expected since dives without a safety stop are inherently shorter, and dives that go

out to ½ of the NO-D time are shorter as well. Shorter dives always have fewer lines

executed, since the number of times the time-step is run is directly related to the

length of the dive.

Figure 24: Instruction Profiling Results, 30% FO2, 40ft

0 5 10 15 20 25 30 35
0

500000000

1000000000

1500000000

2000000000

2500000000

3000000000

30% FO2, 40 ft

NOD, no SS
½ NOD, no SS
NOD, SS
½ NOD, SS

Code Line #

To
ta

l C
ou

nt
 F

or
 D

iv
e

94

Within each time-step there are some variations as well, and this is what is

called program phase information. Phase information is related to branches in the

program, and whether or not branches are taken or not taken given different inputs.

Fortunately for GFM, the only time the time-step routine branches is where free gas

either forming or not forming. For example, between lines 30 and 35 in the reference

program code of the GFM patent, there is a condition that is tested such that if

variable p(nx) is greater than pN2, then variable GF(nx) is calculated. This value for

GF represents gas formation, and this condition being tested depends on the dive

profile being run. The point is that different dives will either satisfy or not satisfy this

condition, and it depends on what portion of the dive is being run at any given time.

In the beginning of a dive, where the diver has just descended to the bottom depth, for

example, gas has not yet formed, and so the condition will not be satisfied. What this

means is that this condition contributes to the program's phase, and so accurate cycle

counts and profiling results depend very much on what type of dive and in what phase

of the dive you are analyzing.

It turns out, however, that in fact as you can see from the aforementioned

figures, this phase information is hardly noticeable. For example, if we look at Figure

15, line 20 represents the “if” statement condition, and line 21 represents the

condition being satisfied. If you take the counts for each line, and normalize over the

number of times the routine is called, you will see that in fact line 20 is called exactly

20 times for each dive, as expected. Line 21 however, is called a different number of

95

times for each dive. For the first dive (NO-D, no ss) it is called 478,392 times

(normalized as 0.624 times per time-step), for the second dive it is 0.371 times per

time-step, 0.557 per time-step for the third dive, and so on. In all cases, given these

96 dive types, line 21 is called less than once per time-step, while others are called as

much as 168 times per time-step, and in fact the average normalized value over all

dives is 0.43 times per time-step.

Beside interesting observations about particular lines of code, what is more

interesting is that throughout all the dives the overall characteristic is the same. As

was mentioned previously, where there is more or less dive time there are expected

differences, but on average we can say that the instruction profile is more or less

constant when normalized to count per time-step. One important observation we

want to make is about the high counts within the routine. Since these lines of C-code

correspond to multiple instructions in assembly, and multiple execution cycles, we

can say that the GFM routine requires literally trillions of cycles in execution during

typical operation for a typical dive scenario. Even if we consider a processor

architecture that has a deep pipeline that parallelizes operations, unless we use

multiple processors in addition, cycle counts over a dive and over the life of a product

are staggering. On the other hand, this observation that it is in fact the GFM routine

that needs to be optimized offers an opportunity where customized hardware can

bring the design concept from the realm of the theoretical to that of practicality.

Although we cannot easily provide here cycle counts for an entire dive

96

computer system including all the management, storage, user input, and output

display activities, we can in fact say that compared to GFM, those operations are

entirely negligible. One way to see this roughly is simply by timing the other

peripheral activities in the dive computer, and comparing those to that of running

GFM within the same system. The OC1 product uses a 1/8 second interrupt system

where all peripheral activities performed have to fully complete within that time.

Most activities are complete well within 50ms, although some display routines

require up to 110ms.

If the required GFM computation was run within the same sort of system like

the OC1 on a 16-bit MSP430 device, it would require roughly 227000 cycles per

time-step. Running at a relatively high frequency of 8 Mhz, and assuming a single

processor system, 227000 cycles would take 28ms per step. Considering that

Constraint 2a stipulates that we need to perform 2711 time-steps every 6s, and that

2711 time-steps would take 76 seconds, it is clear that the constraint cannot be met, at

least using a 16-bit microprocessor like the MSP430. We can consider a much more

powerful and efficient processor like an ARM7, but even then at 45007 cycles per

step, the 2711 time-steps would still take over 15 seconds to complete, thus still not

meeting the constraint.

Note that given a specific frequency we can in fact calculate how many cycles

an implementation cannot exceed in order to just meet Constraint 2a. At 8 MHz for

example, an implementation would need to process time-steps within 17705 cycles in

97

order to meet Constraint 2a. In fact, a better design should meet Constraint 2b, and so

we can say that a processor should be able to process each time-step in half that time

(8852 cycles) while the other half of the time it is held in a low-power state. Again it

should be noted that this is in reference to a one-processor system running at 8MHz.

Dive computer products like the OC1 rarely operate at frequencies above 8MHz due

to their low-power nature. This goal is aggressive, but can be done, and the design

choices made in this study will show how this goal can be met.

From examining the profile information at a high-level, we have learned a

couple things, and make a couple design decisions. First, we know that the

computation of the GFM algorithm is in fact the most important portion of the

program to focus on in terms of customizing hardware. Within a dive computer

system, and over the life of typical operation and even the life of the product, the

computation of system activities is totally negligible when compared to computing

GFM. That means any hardware acceleration should be focused on accelerating

GFM itself, and not other important dive computer code. In fact, even higher-level

routines related to GFM (like simulating dive profiles, retrieving and storing FGV

values and prediction results, interpolating or calculating on prediction results, etc)

are also negligible when compared to the immense cycle counts required for the basic

GFM routine to run while meeting performance constraints.

Secondly, we know that we should accelerate the entire base GFM routine, as

opposed to finding portions within the routine to accelerate. Because of the

98

incredibly high numbers of calculations needed, even lines of code that are only

executed once per step are still in very high numbers over the course of a dive, or the

the life of the product. Some lines are executed more than others, but on a whole,

hardware needs to be customized so that the entire routine can be run in a number of

cycles that amount to orders of magnitude less than the current implementation.

HW/SW PartitioningHW/SW Partitioning

For the reasons explained in the previous section, we can now present a block

diagram of what a customized GFM dive computer system should look like at a high-

level. The concept is in fact intuitive, but the analysis was required in order to make

sure intuition was not hiding unseen factors. In fact intuition is correct, and so the

concept for the most efficient GFM-based dive computer is that of a GFM co-

processor. The concept of a GFM co-processor is that a customized processor should

be designed that primarily computes the base GFM routine itself, much more

efficiently than a GPP can. The rest of the dive computer system would be handled

as is done today, using a low-power general-purpose processor, and should have an

interface to input and output information to an from the GFM co-processor. The

concept of a co-processor is descriptive, but in terms of terminology we will simply

refer to it as a custom processor for GFM.

Figure 25 shows such a processor interfaced with a main dive computer system

processor. Note that this partitioning of the dive computer system also takes into

99

account the i/o requirements of communicating with the GFM processor. Although

the GFM routine requires a great deal of computation and efficiency, it needs to

communicate with the main microprocessor only every 6s. Communication to and

from the main microprocessor is needed in order to input the current depth, and to

output the current computation results of either the real-time state or prediction

results. In fact the data can even be processed on the main micro, and only the most

basic GFM routine can be handled in the custom processor.

This type of system design would also allow for GFM to be added to any product

with minimal design time. Given a well designed, efficient and high performance

custom GFM (co-)processor, the dive computer system designer needs only to drop in

the IC, interface to it, and process the data according to the specific product design

for which GFM is being used. Because GFM models physiological phenomena in the

human body, there are various other applications where it can be used, for example

Figure 25: GFM-based dive computer system concept

100

medical visualization software, where GFM and the custom co-processor could play

an important part in optimizing computation.

Low-Level Application Profiling (Floating-Point)Low-Level Application Profiling (Floating-Point)

To design custom hardware, as we saw in the last chapter, part of the design

flow is also to profile the application at a low level while concurrently making

changes and redesigning both hardware and software. To do this, you need to have

an initial hardware implementation for which to code the algorithm. When the goal is

to design custom hardware, what you can do is start with a reference processor core

and implementation. The first phase of this project involved using the full-accuracy

floating-point algorithm code version unchanged, and to profile and customize an out-

of-order RISC-based processor core using the Simplescalar tool set. SimpleScalar is

a freely available simulator that can be used to evaluate different architecture options

for various targets, specifically including the PISA, MIPS-IV-based instruction set

architecture (ISA). It can simulate and characterize a 32-bit out-of-order pipelined

processor architecture, using specific hardware options selected by the user. It is also

extensible, with the ability of adding custom instructions and custom hardware units.

This was done as a reference point, as a source of profiling information on a RISC-

type processor core, and to investigate how aggressively a modern out-of-order

processor could be customized to reduce the cycle count given the GFM algorithm as

the benchmark. The gcc cross-compiler version 2.7.2.3 ported for the PISA

101

architecture was used with high optimization option -O3. Application profile

information was obtained using sim-profile from the tool set, and the out of order

simulator sim-outorder was used to obtain cycle count information.

It was desired to find a correlation between the hardware architecture options

(cache levels/sizes, number of arithmetic units, etc) and the cycle count output. To

take interactions between parameters into account, and for a more robust evaluation, a

Placket and Burmann Statistical Fractional-Factorial Design of Experiment (DOE)

methodology was used, and the methodology described in [40] was followed almost

exactly. Area estimation was performed using the SimpleScalar Estimator tool [41].

Simulations were performed and design changes were iterated systematically to

reduce cycle count. The purpose of the P&B DOE is to isolate those design

parameters (in this case Simplescalar architecture options) that contribute most to

cycle count. By doing this, you can then set those parameters with highest influence

on cycle count to a relatively high value, and those with lesser impact to lesser values,

in order to not waste resources and power. For example, if the DOE showed that the

number of integer ALUs was the most influential, while cache size is not important at

all, then the number of integer ALUs might be set to 4 while cache might be

eliminated. In this way, the DOE results can be used to customize the Simplescalar

core such that the design specifically caters to the needs of the GF algorithm, and then

by profiling GFM on that configuration we can gain more insight into how a totally

custom core can be designed for more efficiency.

102

TABLE I: Simplescalar Configuration

Sim-outorder Parameter Value
RUU Capacity (# instr.) 64
Integer ALUs 3
Branch Mis-pred. Latency (cycles) 1
Issue Width (instr. / cycle) 4
Load/Store Queue Capacity (# instr.) 32
Decode Width (instr. / cycle) 4
Instruction Fetch Size (# instr.) 8
Bimodal Branch Predictor Table Size 256
Floating-Point Multipliers/Dividers 1
Width of Memory Bus (# bytes) 4
Floating-Point ALUs 1
Integer Multipliers/Dividers 1
Data Cache None
Instruction Cache None
Fetch Speed 1
Memory Latency 18,2
Cache:icompress true
bpred bimod

Table I: Simplescalar configuration for customized PISA core.

The DOE led to a high performance design with a cycle count of 2418 cycles, a

cycle per instruction (CPI) of 0.384, and with an estimated area of 2858 millions of

square lambda and 1.5 million transistors. The customized PISA core design would

meet the real-time performance constraint with a modest frequency of just over 1

MHz, and the corresponding Simplescalar parameters are given in Table I. Those

parameters not listed in the table were given default values. Note that this aggressive

design customization for performance amounts to a 95% performance speedup (a

factor of 18) as compared to the cycle count on ARM7TDMI for the software

103

floating-point version. This design configuration would be great except that in the

DOE the only consideration made was for performance, and so the design is surely

not as efficient as it could be.

We can learn a good deal from looking at the profile information from the GFM

code run using this Simplescalar configuration. The figures that follow show the

results of running the standard dive sets using the customized Simplescalar processor

core configuration. We will analyze the Instruction Profile, Instruction Class Profile,

Branch Instruction Profile, Addressing Mode Profile, and Load/Store Address

Segment Profile. Even though these profile data are specific to the RISC hardware

simulated by Simplescalar, they can still give important insight into what the

algorithm requires, and this information will be used to make decisions on what

characteristics the customized hardware should have.

Figure 26 shows the distribution of the instruction classes used in the program.

We see that only 23% of the instructions are actually implemented with floating-point

instructions, while 38% of instructions are integer operations. Integer operations are

so numerous because they include address computations and other overhead in loops,

branches, comparisons, and intermediate operations. The next largest components of

the distribution are load, then unconditional branches, and then stores, although they

only contribute less than 38% of the instructions. Interesting to note is that on a

processor like the 16-bit MSP430, since there is no floating-point hardware, a similar

evaluation yields around 100,000 integer operations per loop. Since floating-point

104

instructions take many cycles and use multiple instructions, this reduced instruction

count here is expected. For example consider that you have 1475 floating-point

multiplication operations. Assume each operation takes 87 cycles, including overhead

of 8 cycles for calling and returning from the multiplication routine. That amounts to

over 11,000 cycles simply in overhead of calling the f.p. routine. The total cycle

count is over 120000, and roughly matches the type of numbers you would see on a

16-bit platform like the MSP430. If we suppose we are running at 8MHz, then

11,000 cycles takes roughly 1.4ms. That means in a given GFM calculation taking

5000 time-steps, it would take the MSP430 75 seconds to complete the calculation,

and almost 7 seconds of that would be overhead in calling floating-point routines.

With the compilation statistics given here, a running frequency of 8MHz, and an

average (ideal maximum) cycles per instruction (CPI) of 1.0 in a 3-stage pipelined

architecture, the 75 second calculation would reduce to around 23 seconds. In fact

these numbers are in the correct ballpark for actual measurements made on the

MSP430 vs. an ARM7-based product that uses a 3-stage pipelined architecture.

Another interesting set of data is that of the most frequent instructions used in

the compiled program. Figure 28 shows the 8 most frequently used instructions,

comprising 87% of the total instructions in the program. The break down of

instructions is as follows: the largest percentage of instructions are floating-point

single-precision loads, immediate unsigned integer addition, single-precision floating-

point multiplication, unsigned integer addition, single-precision floating-point

105

subtraction, store single-precision floating-point, shift left, and finally single-

precision floating-point addition. It is important to note here that instruction counts do

not inherently indicate execute time, since some instructions can take longer than

others, and memory access times are not included in such a comparison. Other

statistics include the branch instruction profile, which indicates that 87% of branches

used conditional direct type branches, and the addressing mode profile indicated that

97% of instructions used register + constant addressing.

Figure 26: Instruction class profile from Simplescalar profiling results

Instruction Class Profile

39%

23%

22%

8%

7%

1%

0%
int computation

fp computation
load

cond branch

store

uncond branch
trap

106

Figure 27: Branch Instruction profile from Simplescalar profiling results

Branch Ins truction Profile

87%

11% 1%1%
0%

0%

cond direct

uncond direct

uncond indirect

call direct

call indirect

cond indirect

Figure 28: Instruction profile from Simplescalar profiling results

Ins truction Profile

23%

23%

10%
9%

7%

7%

7%

6%
6% 1%1%

l.s addiu

mul.s addu

sub.s s.s

slti add.s

bne beq

j

107

Figure 29: Addressing mode profile from Simplescalar profiling results

Addre ss ing M ode Profile

97%

2%

1%
0%0%0%

(reg + const)

(gp + const)

(sp + const)

(const)

(fp + const)

(reg + reg)

Figure 30: LD/ST address segment profile profiling results from Simplescalar

LD/ST Addr. Se g. Profile

99%

1%

0%

0%

data segment

stack segment

heap segment

text segment

108

From the addressing mode profile information we can see that there is no need

for so many addressing modes, since 97% of operations use one type of addressing.

When designing a custom processor core, a good deal of complexity can be removed

by only including the required addressing modes for the application, since the

processor would no longer need to have hardware capable of decoding the other

unneeded modes. From the load/store address segment profile, we see that virtually

all instruction operate on data memory. This is as opposed to an algorithm that makes

a lot of subroutine calls (using more stack memory), or that allocates a lot of memory

at runtime (using more heap memory). As we could intuitively see from high-level

code, the GFM algorithm routine is simplistic, does not contain a lot of sub-routine

calls or memory allocation, and the profile results confirm this.

The branch instruction profile further confirms the intuition that because of the

large amount of time spent in loops, there is a high percentage of conditional

branches executed. This observation allows us to notice that providing loop support

in hardware could offer more efficient operation. Providing hardware loop support

would not only reduce the number of conditional branches needed in software, but

also the corresponding address calculation, thereby reducing integer computation as

well.

Another very important observation made from profiling results is that the

Simplescalar simulator contains a much higher number of instructions than are listed

109

in the instruction profile. What that means is that all the complexity within the

processor core design is simply wasted space, and possibly wasted energy if those

circuits are not fully off or in a low-power state. An application-specific core design

should provide only instructions explicitly needed for the GFM algorithm to run, in

order to reduce energy and improve performance. In general, performance can be

increased when complexity is removed because delay time within the logic circuits

can possibly be decreased. In other words, in general, the less complex the processor

core is, the faster it can operate, and so a customized core design should be a simple

as possible, including only those instructions, addressing modes, branch types, and

memory structures needed for the application. This information was later used to

define a new instruction set and processor core architecture for the GFM algorithm.

Floating-Point to Fixed-Point Conversion ResultsFloating-Point to Fixed-Point Conversion Results

As was mentioned previously, conversion of an algorithm from floating-point

to fixed point can allow the algorithm to be implemented using simpler, lower power

and lower cost hardware, and to run more efficiently and in less time. If the

conversion to fixed-point can be done such that the resulting (usually reduced)

accuracy is sufficient, this technique can offer a huge increase in performance and

efficiency simply by redesigning the software implementation. Of course, when

converting to fixed-point, there is an inherent change being made to the target

hardware design, but as part of a hw/sw co-design flow, hardware re-design is

110

expected anyway.

TABLE II: Fixed- vs. Floating-Point Speedup

Processor Floating-Point
Cycles/Step

Fixed-Point
Cycles / Step Speedup %

MSP430 227000 1871129 --
Simplescalar -- 19711
ARM7TDMI 45007 15272 66
ARM9TDMI 43071 13133 70

ARM10E 41271 13133 68
XScale 41271 13133 68

CortexM1 80496 33856 58
ARM1136J 45100 13133 71

Table II: Speedup resulting from floating-point to fixed-point conversion. ARM targets profiled on IAR compiler with full
optimizations for speed.

This section presents the results from converting the GFM algorithm code to

fixed-point. The results in Table II are in the form of cycle counts. As was explained

in Chapter 1, the fixed-point format used in this study was Q2(18.14). The table

shows the cycles counts per step for the algorithm run in its original floating-point

implementation, and in the new fixed-point implementation. This was done on 7

different architectures, and the corresponding speedup resulting from the conversion

is given in the last column.

The results are quite impressive, with speedup ranging from 58% to 71%. Note

that the MSP430 is presented there only for reference. Since it is a 16-bit machine, in

fact the 32-bit fixed-point version is worse because it cannot do 32-bit integer

operations at the hardware level. On the other hand, it is interesting to see how high a

cycle count is exhibited on that device for the floating-point version compared to

111

other architectures. Note that none of the devices presented here have floating-point

hardware like Simplescalar, instead they use emulated floating point software

routines to compute floating-point results. The fixed-point implementation cycle

count is listed for Simplescalar, but not along with the corresponding floating-point

count. This is because although Simplescalar can simulate floating-point hardware,

the compiler ported for it cannot compile using emulated (software) floating point.

Therefore, the Simplescalar floating-point cycle count cannot be compared to the

Simplescalar fixed-point cycle count since they represent different hardware. All

ARM cores are 32-bit, fixed-point hardware machines.

The results are impressive, but it also has to be shown then that the fixed-point

version of the algorithm is in fact valid. To show that the fixed-point version

performs accurately enough for the application, and that the conversion was a

success, presented in Table III are results from running the standard dive set. The

results are given in terms of the main GFM output, the free gas volume. The FGV

values for a specific dive profile are the most important outputs, and FGVs obtained

using a fixed-point version of the algorithm need to match results from the floating-

point version. Table III shows the results for dives with a bottom depth of 180ft up

to 60 ft, with and without safety stops (SS), and out to the NO-D limit, and ½ the NO-

D limit. You can see which dives were run out to the NO-D limit by noticing which

dives reached the critical FGV, 40ml, and those that were considerably less. You can

also see the effect of taking a safety stop - as expected the free gas is less when the

112

stop is taken.

TABLE III: Fixed-Point Accuracy, FO2=21%

Table III: Standard dive set run in both floating-point and fixed-point algorithm implementation for FO2=21%

Note that as was explained in Chapter 1, all FGV values are maximum peak values

found after the simulated diver surfaces. It is that peak FGV value that is used to

Floating-Point Fixed-Point
Depth SS Time (min) # Steps Max FGV Time (min) # Steps Max FGV

180 N 6.6 766129 40.2 6.7 765940 40.3
180 N 4.0 697352 23.4 4.0 697112 22.8
180 Y 6.6 842989 9.2 6.7 842590 9.0
180 Y 4.0 779294 7.8 4.0 778854 7.2
160 N 7.9 789807 40.1 8.1 798137 40.3
160 N 4.7 705146 23.3 4.7 704990 22.8
160 Y 7.9 866457 9.2 8.1 874997 9.4
160 Y 4.7 787088 6.8 4.7 786732 6.6
140 N 9.8 834890 40.1 10.3 845394 40.3
140 N 5.3 712945 21.7 5.3 712807 21.3
140 Y 9.8 911750 9.6 10.3 922044 9.7
140 Y 5.3 794687 5.4 5.3 794349 4.9
120 N 13.5 921089 40.2 13.8 925764 40.0
120 N 7.0 749552 22.3 7.0 749132 22.1
120 Y 13.5 997949 10.6 13.8 1002414 10.4
120 Y 7.0 831494 7.4 7.0 830874 7.3
100 N 19.5 1066685 40.1 20.0 1083677 40.1
100 N 9.7 809116 21.0 10.7 835550 22.1
100 Y 19.5 1143335 12.0 20.0 1160537 12.0
100 Y 9.7 891058 5.8 10.7 917292 6.4
80 N 30.3 1343695 40.1 30.9 1355036 40.0
80 N 15.3 946925 19.8 15.3 946847 18.7
80 Y 30.3 1420555 14.9 30.9 1431686 14.4
80 Y 15.3 1028667 5.2 15.3 1028389 4.8
60 N 52.4 1901589 40.0 53.3 1919344 40.0
60 N 26.0 1212749 15.8 27.0 1239632 15.9
60 Y 52.4 1978449 19.4 53.3 1995994 18.7
60 Y 26.0 1294491 3.9 27.0 1321374 5.9

113

determine probability of DCS, and so it is vital for that value to be correct. All dives

in Table III were run using air (FO2=21%), but that the results also are representative

of results for other mixtures as well.

It is also important to point out that the dives that include safety stops were

taken to the NO-D limit or ½ the NO-D limit as calculated without considering the

safety stop, then the safety stop was taken subsequently. This is as opposed to

calculating new NO-D limits that consider the safety stops in the calculation, which

would result in longer times. For example, for the 100ft dive without a safety stop,

the NO-D limit is 19.5, and in the table another dive is shown with a safety stop for

the same bottom time. This would be confusing to those who understand the

concepts of free gas and how GFM works, except that you need to notice that the

resulting FGV is much lower. If the dive with a safety stop were taken out to a new

NO-D limit that was calculated in such a way that included the safety stop, the

resulting FGV would of course also be roughly 40 ml, and the NO-D time would be

longer.

Comparing the results between fixed- and floating-point, we start with the dive

times. Finding the NO-D limit the case of simulating these standard sets amounted to

staying at the current depth until the immediate ascent prediction gave a FGV value

above Vcrit (40ml). For example, For the 100ft dive without a safety stop, the NO-D

limit was 19.5 minutes for the floating-point version, and 20.0 minutes for the fixed-

point version. As we know, some difference is expected due to the nature of how the

114

fixed-point implementation approximates a much higher resolution numeric format.

Still the difference is 1 minute or less, and no more than 1.1 ml in all cases except the

last dive, where the difference was 1 minute and 2ml. Additional accuracy can be

found by adjusting the scale factors in the fixed-point program code, but for a typical

dive computer application, these results are acceptable.

The number of steps required is large because it includes all the hundreds and

even thousands of prediction calculations (as described in Chapter 1) performed at

each time-step. When the dives times between floating- and fixed-point versions

differ by even a small amount of time, there are more or less predictions introduced,

and therefore more or less time-steps needed. Even so, over all dives in Table III, the

difference in the number of time-steps run is less than 4%. Again, this is entirely

acceptable since times and FGVs are what need to be accurate, not necessarily the

number of time-steps.

The summary for this section is that tables II and III show that the fixed-point

algorithm implementation is valid and accurate, and as we know - much more energy

efficient than the floating-point version. If a product designer, for example, is willing

to live with the 1ml difference in FGV from the fixed-point version algorithm in order

to get 66% more performance on an ARM7TDMI target for example, then this fixed-

point implementation is a great success. If a designer needs a much more accurate

result, there are many options. The fixed-point version could use a longer format, for

example 40 bits or more instead of the 32 bit format used here. One could also scale

115

values much more aggressively to squeeze out as much accuracy as possible. The

issue with more aggressive scaling is that as mentioned previously, each time you

introduce a new scaling operation you introduce more operations, and so as always

there must exist a trade-off between performance and accuracy.

In this study, we will accept the results as shown in Table II and Table III, and

continue forward to further customize by designing now a customized processor core

for this new fixed-point GFM implementation. By doing this, the goal is to combine

the efficiency found from the fixed-point conversion with more efficiency introduced

by customizing hardware, for a much higher overall efficiency for the system. In the

next section we begin the process of designing a custom core by using the

information from this and previous sections to define a design a new instruction set

architecture.

Low-Level Application Profiling (Fixed-Point)Low-Level Application Profiling (Fixed-Point)

Since we now want to use a fixed-point implementation of the algorithm, we

need to again profile that implementation. This was done again on the Simplescalar

simulator and results are presented in figures 31-35. This configuration yielded a CPI

of 0.54 and a cycle count of 19711 cycles per time-step. Note that we expect the

time-step to be more than the first Simplescalar configuration because in this

configuration we are no longer using floating-point hardware.

It is interesting to note that as shown in Figure 31, the instruction class profile

116

is completely different from the floating-point hardware version. Since there are no

floating-point instructions used, we now see 62% of instructions are integer

computations (compared to 39%), about 13% are branches (compared to 9%), and

load and store operations make up about 25% of instructions (compared to 29%).

More integer computation is of course expected, and increased numbers in other

categories is as well, since the floating-point instructions are removed.

Figure 31: Instruction class profile from Simplescalar profiling results

62.3%
10.9%

15.5%

9.0%
2.3% .0%

Instruction Class Profile

int computa-
tion
cond branch
store
load
uncond
branch
trap
fp computation

117

Figure 32: Branch Instruction profile from Simplescalar profiling results

82.4%

8.9%

4.3%
4.3% .0%

Branch Instruction Profile

cond direct
uncond direct
uncond in-
direct
call direct
call indirect
cond indirect

Figure 33: Instruction profile from Simplescalar profiling results

21%

15%

11%
11%

7%

7%

6%

6%

6%
5% 5%

Instruction Profile
sw
addu
addiu
lw
beq
bne
sll
or
mflo
and
srl

118

Figure 34: Addressing mode profile from Simplescalar profiling results

62.8%

23.9%

7.3%
6.1%

Addressing Mode Profile

(sp + const)
(reg + const)
(gp + const)
(const)
(fp + const)
(reg + reg)

Figure 35: LD/ST address segment profile profiling results from Simplescalar

70%

29%

1%
Load/Store Segment Profile

stack segment
data segment
heap segment
text segment

119

The branch instruction profile is very similar, however, the addressing mode,

instruction, and load/store instruction profiles are different. If we compare the

instruction profile in Figure 28 to Figure 33, we see that in the fixed-point version, of

course all the single-precision floating-point instructions are missing (such as mul.s,

sub.s, add.s), and the percentage of integer addition instructions is higher. The fixed

point version code also uses many more addressing modes (compare Figures 29 and

34). It is not exactly clear why this is, but we can say that because the

implementation is different, there may have been optimizations that could be

performed more easily by the compiler using more addressing modes with the fixed-

point implementation.

Finally, we see that the load/store profile is different as well (Figures 30 and

35). In the floating-point version there are almost 100% of memory accesses use the

data segment, and virtually no stack usage, whereas in the fixed-point version, almost

70% of memory usage utilizes the stack and the remaining usage is mostly from the

data segment. This most likely has to do with the fact that the fixed-point version

code needs to call fixed point routines to do arithmetic, whereas the floating-point

version code does not. This is expected and gives insight into the memory structure

design that will be explained in a following section.

What is also interesting is the specific instruction frequency plot given in

Figure 36. This is a plot of which instructions executed how many times per step,

120

averaged over many time-steps. Very interesting is that for the most part, instructions

are evenly distributed, but at one point there is a spike. This is an indicator that some

instructions execute much more often than others, and that there may be an

opportunity for acceleration in hardware. In fact upon inspection at the

corresponding addresses in the Simplescalar PISA assembly code, it was found that

the spike in Figure 36 in fact corresponds to the integer division routine, and that

these 49 instructions represented less than 2% of the code, but the program spent 27%

of the time executing those instructions (as a group). In the next section we will see

how implementing a hardware integer division module further accelerated the code.

Figure 36: Specific instruction frequency per time-step

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

Instruction Frequency (per timestep)

Instruction

C
ou

nt

121

Instruction Set Architecture DesignInstruction Set Architecture Design

When the GFM algorithm is run on a 16-bit, non-pipelined, in-order, mostly

RISC instruction set microprocessor, it requires 227,000 cycles per step when running

the floating-point version of GFM. With am ARM7 core that has a 3-stage pipeline,

we expect at least a reduction to at least 1/3 of that number, and in fact it is less, at

about 45,000 cycles per step. When converted to a fixed-point implementation, we

see additional efficiency where the cycle count is about 20,000 cycles per step for

Simplescalar, and roughly 15,000 cycles for an ARM7 core. Using this information,

and the profiling information from the previous sections, we now can make some

decisions on what a custom architecture should include, with the first step being

defining the instruction set architecture.

We know that a pipelined architecture is favorable, since even with only a 3-

stage architecture in the ARM7 we see a factor of 5 decrease in the number of cycles.

Of course we can also reach this conclusion simply by referring back to Chapter 1

and taking note of how computationally intensive and repetitive the algorithm is.

What that points to is the need for some sort of mechanism to provide more

parallelism, and a pipelined architecture is a good choice. Now, given that we are

going to choose a pipelined processor, we then would want to use a RISC-like ISA,

since RISC type ISAs lend themselves well to pipelining given the simple nature of

the instructions. How many stages in the pipeline are needed will become clear in the

next section, but for now we will focus on instructions.

122

Basic Instructions

We will be using a fixed-point implementation based on the results presented in

the previous sections. On a basic level we will certainly need arithmetic operations

like add, subtract, multiply and divide. These will be based on 32-bit instructions, 32-

bit data, and 32, 32-bit registers. Arithmetic operations will only be able to operate

on register data, so data need to be loaded into general-purpose registers first. In fact

the arithmetic operations in this design were combined into one instruction called

ALU, and the specific operation will be designated by an operation code.

We will use a load-store architecture, so we will need load and store operations.

Because we know the GFM algorithm runs a lot of operations from within loops, and

operates on array data, we will include indexed load and store instructions, as well as

explicitly addressed. In fact, since there is a high amount of load and store

operations, we will use load and store operations that can load and store 2 data values

at a time. These operations are called LOAD2 and STORE2, and LDIX2 and STRX2

for indexed addressing versions.

Loop Instructions

Given the large amount of processing done in loops, the design presented here

includes hardware loop support. This means that within the instruction set, there are

instructions to set a loop counter, and perform a combined test and branch operation.

These instructions are called LDINDX and WHILE. LDINDX (“load index”) is used

123

to load the start and end index of a loop counter, and “while” is used to test the loop

counter, increment it, and branch if needed. The LDLPCTR instruction is used to

load the loop counter into a register, for use in the program. The WHILE instruction

is used to convert C-code for loops to a “do-while” type structure in assembly. All

loops in the implementation are written in effect as do-while loops. As we will see in

the next section, these instructions correspond to custom hardware loop registers, but

these are unaccessible otherwise except via these instructions.

Control Instructions

In addition to hardware loop support, a special c-code like if statement is

implemented. This instruction is called IF_CMP, and works by specifying two

registers to compare, the operation used to compare, and an offset used for calculating

the branch target if the condition is true. The condition is tested in hardware

automatically, without explicit operations such as separate compare and then branch-

if-equal (or similar) instructions. Although the basic instructions are RISC-based,

these control instructions, along with the loop instructions make the design more like

a CISC machine. In this way this design is more of a hybrid architecture than purely

RISC or CISC. There is also a JUMP instruction to explicitly jump to some address,

for example for use in an if-else type structure.

124

Special Instructions

In addition to the above instruction types, there are a few special instructions.

One called RTorPRED, tells the processor which memory space will be operated on.

What this refers to is that when we need to run predictions, as was explained in

Chapter 1, memory from the real-time state variables needs to be copied, and the

time-steps then need to be run on the copied values, so as not to disrupt the real-time

state. What the instruction actually does will be explained in the next section, but for

now we can say that it tells the memory system which memory space is being used.

In addition we have a related instruction called MEM_COPY. This instruction tells

the hardware to start copying real-time data to the prediction memory space.

Instruction Set Details

Table IV gives details of the custom instructions created for the custom GFM

processor. Note that there are 4 different instruction formats. The number of

instruction formats corresponds to the complexity of the instruction decoding scheme,

so in general it is desired to reduce the number of type of instructions. The first type

(Type 1) used by ALU, and RTorPRED, uses an opcode, then 9 bits unused,

followed by 2 5-bit source register addresses in the case of ALU (or unused in the

other instructions), a 5-bit destination register address (or unused), followed by 4 its

used differently for each instruction.

125

TABLE IV: Custom 32-Bit Instruction Set

OpCode (4) Detail (28)
Type 1

ALU N/U(9) RS1(5) RS2(5) RD(5) OP(3),N/U(1)
RTorPRED N/U(9) N/U(5) N/U(5) N/U(5) N/U(2),

RTorPRED(2)
Type 2

LOAD2 ADDR1(9) RD1(5) ADDR2(9) RD2(5)
STORE2 ADDR1(9) RD1(5) ADDR2(9) RD2(5)

Type 3
JUMP OFF(15) N/U(5) N/U(5) N/U(3)

IF_CMP OFF(15) R1(5) R2(5) OP(3)
LDLPCTR N/U(15) RD(5) N/U(1),N/U(4) N/U(3)
LDINDX LPSTRT(8),

N/U(7)
LPMAX(8) N/U(1) N/U(4)

WHILE OFF(15) LPMAX(8) N/U(1) N/U(4)
Type 4

LDIX2(4) ADDR1(9) ADDR2(9) RD1(5) N/U(2) ONEORTWO(3)
STRX2(4) ADDR1(9) ADDR2(9) RD1(5) N/U(2) ONEORTWO(3)

LDIX1m1(4) ADDR1(9) N/U(9) RD1(5) N/U(2) N/U(3)
Table IV: custom 32-bit instruction set for customized processor core

ALU uses the last 4 bits to include the specific ALU operation code (indicating either

add, sub, mul, or div), and RTorPRED uses the bits to indicate which memory space

to use (real-time or prediction).

The second category (Type 2) is the load/store group including instructions

LOAD2 and STORE2. The format is simple and includes two sets of

addresses/register pairs. For LOAD2, the addressed are the addressed in memory

from where data is read, and the register addresses are where they should be written.

For STORE2, the addresses are where the data read from the registers should be

written to. Note that the addresses are 9-bits, so this limits the memory space to 512

126

32-bit values, and the registers are limited to 32 addresses. Considering the

prediction memory space as well, this amounts to a maximum of 4KB of memory that

can be addresses using these instruction formats.

Type 3 instructions are control and loop instructions. JUMP uses a 15-bit offset

where the first bit is used to indicate whether the jump is forward or backward. This

amounts to allowing up to a jump of 16KB in either positive or negative direction.

Considering that we have 32-bit instructions, this allows for jumps to branch forward

or backward no more than 4096 instructions. In fact the total number of custom

assembly code instructions for the GFM routine is only about 320 so this is more than

enough. The IF_CMP instruction also uses this same type of jumping mechanism,

except that it also includes the addresses of two registers to compare, and an

operation code for what type of comparison is to be performed. There are 4 types

implemented, if-less-than, if-greater-than, if-equal-to, and if-not-equal-to. If the

register values being compared satisfy the condition indicated, the jump is taken

corresponding to the 14-bit offset specified.

LDINDX is used at the start of a for-loop type c-code structure, in order to load

the start and end loop indices. LPSTRT and LPMAX are the starting and ending

indices, respectively. Most of the overhead associated with loops is removed due to

the internal loop registers and automatic loop increment and test. As was mentioned

previously, in this way these instructions allow a c-code style for-loop to be de-

constructed and re-written as a do-while structure. For example, the GFM algorithm

127

contains a few loops in the form below:

for(int nx = 0; nx < NUM_CELLS; nx++)
{

// ...
}

This structure is re-written in the custom assembly as follows:

prepare index for loop
OP_LDINDX 0 21 LOOP1
LP1: OP_NOP
OP_WHILE LP1 21 LOOP1

Note the use of the “NOP” instruction. The “NOP” is a commonly used instruction to

indicate “no operation”, and the hardware simply allows the processor to run but

without doing any specific operation. These can be used to insert so-called stalls in

the pipeline where necessary. In the case above, it is simply used as a placeholder for

the loop. Note that the label “LP1” is the branch target for the WHILE instruction.

The LDINDX instruction loads the loop index once, and the WHILE instruction loops

back to the label LP1 on each iteration. When the loop is complete, the condition

tested by WHILE does not result in a branch, and the next instruction after WHILE is

loaded. Typically the for-loop structure written in assembly includes first loading the

initial loop counter value, then a comparison operation is done after loading the

current loop counter value and the reference value, then a branch is either taken or not

taken. This customization allows for hardware to perform the comparison

immediately when the WHILE instruction is loaded, and the result is processed in the

first stage, thereby reducing the number of operations needed for the loop comparison

to 1 , as well as the number of stages needed to 1. The result is that the loop

128

condition is tested and processed within 1 cycle, as opposed to multiple cycles for a

standard loop compare and branch operation. Hardware for 2 levels of loops was

initially supported, although in this custom implementation of GFM only 1 is used,

since inner loops are optimized by a compilation technique called unrolling, used to

increase efficiency in the pipeline, and to more aggressively parallelize operations.

Type 4 instructions include indexed instructions. The index used to load or

store values is in fact the loop counter, and this optimization has to do with the fact

that GFM processes a lot of values from within c-code arrays. Arrays inherently use

indexed values since arrays are simply a collection of data values in memory that are

contiguous. For LDIX2 and STRX2, the addresses needed to load or store 2 values

are specified, as well as the loop number (referring to the inner or outer loop), and the

number of values to load or store (one or two). If one value is specified, the second

set of data is simply ignored. One optimization made here is that only one register is

specified, and the second register address required (for a double load/store operation)

is assumed to be the next register address. This is useful for example when loading or

storing two consecutive array values. This also depends on how the assembly code is

written, but happens enough in GFM that this optimization is useful. A specific

example is given in Figure 37, where the original c-code is given first, and the

resulting assembly code follows. Note that registers R4 and the inferred register R5

are used to load and store values. The structure shown allows the loop to load, store,

then compare and branch in only 3 cycles, although when pipelined the operations

129

take an equivalent of less than 1 cycle per loop because of the way the pipeline

overlaps instructions between loop iterations and pipeline stages. The LDIXm1

instruction was an optimization added that allows you to load a value not base on the

loop counter value, but based on that value minus 1. This is present in the c-code

implementation of GFM, and because the loop counter is held in a special register, it

was simple enough to add another register that always holds 1 less than the loop

counter for the special load instruction. This reduces the number of cycles needed to

load and then decrement the loop counter value before using it.

// c-code
for(int nx = 0; nx < NUM_CELLS; nx++)
{

poldold[nx] = pold[nx];
pold[nx] = p[nx];

}

custom assembly code
OP_LDINDX 0 21 LOOP1
LP1: OP_LDIX2 pold p R4 [i] 2
OP_STRX2 poldold pold R4 [i] 2
OP_WHILE LP1 21 LOOP1

Figure 37: Conversion from c-code for-loop to custom assembly

130

Processor Core Architecture DesignProcessor Core Architecture Design

The ISA design given in the last section of course assumes or infers something

about the physical architecture, and the architecture has to assume something about

the ISA. The concept for the physical core was to provide a 5-stage pipeline designed

for instruction level parallelism (ILP), but by reducing the number of instructions and

providing customized instructions for one specific application to reduce complexity in

hardware. If we simply used a 5-stage pipeline machine like MIPS, there would be a

lot of overhead designed into the system that is unneeded when running the GFM

algorithm. Choices to reduce complexity are mainly to reduce area and power in the

resulting design. Having more instructions, more addressing modes, and more

complicated structures built in to the system means more circuits are drawing power

from the supply (unless specifically turned off), and possibly longer transport times as

signals go through the system from input to output.

The basic pipeline described in this section is based on the basic MIPS design,

where the first stage is instruction fetch, followed by instruction decode, followed by

execution and address calculation, followed by memory access, and finally write

back. The difference of course, between this design and MIPS, is that instructions

have been customized, load and store operations can load and store 2 values at a time,

and where some instructions are more CISC like than RISC. The customized loop

and control instructions are not present in MIPS, and RTorPRED is customized for

this design. In addition, to achieve a higher performance, the integer division

131

operation is handled in hardware rather than in software.

Architecture

Starting with the top-most level view of the device, the GFM custom processor

looks like as shown in Figure 38. There are 9 pins to interface to the device. Because

the device was designed and simulated using Xilinx FPGA tools, and because the

device chosen requires a clock input of greater than 2 MHz, the signal CLOCK is

used to input a clock signal to the device. The ENABLE signal is a global enable,

used to enable or disable major blocks within the device, in order to conserve power.

The signals SS, MOSI, MISO, and SCLK are used to communicate with the device

using an SPI module interface, designed into the device. DCMLOCK is a signal used

to indicate when the internal clock is stabilized. The internal digital clock module

(DCM) takes the input clock signal CLOCK and divides it for a faster clock. The

input signal STEP is used to tell the device to start another GFM time-step

computation, and the RDY signal indicates that the computation is complete and

ready to compute again.

Figure 39 shows the next inner level device schematic. Note the external

signals connecting to 3 main components. The top-most component is the DCM.

The bottom left is the SPI and the bottom right is called the datapath. The datapath

includes all the memory, ALU, and control components and interface signals that

make up most of the system. The SPI has a few lines connecting to the datapath

because the SPI interfaces with system memory. The SPI is very simple and basically

132

contains one command, which allows the outside world to input pressure and time

data to the GFM algorithm for processing. The datapath is much more complex, and

will explained further in the following section. Note that figure 38 is analogous to

how the custom GFM processor would look as a physical custom IC.

Figure 38: Top level device schematic

133

The Datapath

Figure 4 shows a conceptual rendering of the custom processor datapath.

Notice the pipeline stages and related pipeline registers S2, S3, S4, and S5. In the

bottom left corner you will notice the hardware loop support registers and related

adders and subtractors. In the upper left corner you see the program counter (PC),

and related MUX and adders. Note how most data flows from left to right, but that

some is forwarded back through the pipeline from stages 4-5 to stages 3, 4, and 5. As

was mentioned previously, this is a technique used to avoid data and control hazards.

Figure 39: Second level device schematic

134

The ALU in the 3rd stage is shown as a simple ALU, but note that it includes a

hardware division module that can stall the entire pipeline while in progress. MUX

M2 is used to select between sending the next instruction, or a NOP instruction to

stall the pipeline. Notice that the ALU, RAM, and register file (RF) all require

MUXes to select between input data that come from either pipeline registers

(originally from data read or calculated in earlier stages), forwarded from later

pipeline stages, or sent from special calculation ALUs (like loop register

calculations). In this pipeline design, the entire instruction is forwarded through each

stage, starting from stage 1 when it is read from ROM. Note that the instruction

Figure 40: Custom GFM Processor Datapath

135

registers (IR) acts as the stage 1 pipeline register.

Note that there are some components not shown in the figure. For example, the

controller that handles all the MUXes, memory enable and read/write signals, and

other logic associated with the datapath. The controller can access all components

including the pipeline registers, ALU, memory, and MUX select signals. The

controller is a very important portion of the design to point out because it implements

the control corresponding to the custom ISA. As was mentioned previously, there is

some logic associated with the division module and stalling the pipeline. In this case,

there is a signal called FREEZE, as opposed to stall, named so because when a

division operation is detected and begins, the entire pipeline is frozen until the

operation is complete.

Memory

The memory system is relatively simple. There is one memory used for

program code (ROM), and one for random access memory (RAM). The RAM

memory is special in that it is split between real-time and prediction memory from

with the same block memory. The real-time memory is the memory used in

calculation of the real-time state of the algorithm, and the prediction memory is used

to perform the same operations, but on a copy of the real-time state variables in order

to predict future values of the real-time variables. Since the design is pipelined, the

memory copy can be done in software efficiently by loading and storing pairs of data.

136

The ALU

In implementations like those using ARM processors, MSP430, and many other

fixed-point hardware processors, division is handled in software. Whereas

multiplication, addition, and subtraction are handled with simple fixed-point

hardware, division is not as simple, and requires software routines to carry out the

operation. For example, given the fixed-point c-code implementation of GFM, when

compiling the program using an IAR commercial strength compiler using an

ARM7TDMI as the target, the fixed-point division routine requires roughly 80 cycles

to complete each division operation, averaged over 100 calls to the division routine.

This is with some optimizations turned off so that the compiler does not remove the

arbitrary operation done simply to profile the operation. For this reason, in this

design the ALU was designed so that division is handled in hardware, with a minimal

number of cycles. There exist many binary division algorithms, and the Wikipedia

article on different methods is a good place to start. The implementation here uses

the simplistic and intuitive, iterative, shift-and-subtract method as given in Figure 32

as a c-code implementation, taken from [42].

Note that this implementation is given only as a conceptual implementation,

since, this design implements this algorithm in hardware. The assembly programmer

using this design needs only to specify a division ALU operation, and the hardware

with iterate through the steps shown to arrive at the result. Note further that the

method requires 32 iterations of the loop, as well as some additional operations to

137

deal with the results. Extra operations are needed since this routine handles unsigned

division, but we use it for signed, fixed-point division for Q2(18.14) formatted

numbers. What happens is, when a division ALU operation is detected, the operands

are loaded into the appropriate ALU registers, and the processor ticks along until the

operation completes, halting the pipeline during the computation, and outputting the

result using the standard ALU output upon completion.

Handling the division operation in hardware reduces the reported near 320 to

385 basic RISC instructions, to one, and with a 5-stage pipeline, that amounts to

roughly 60 to 80 effective cycles reduced down to around 35. This is a huge

reduction considering how many division operations are performed over the course of

a standard dive, and over the life of a dive computer product. Energy is also reduced

of course, since less cycles means less time the processor is running and thus less

energy dissipated.

138

The Serial Peripheral Interface

The SPI is a simple interface designed to allow data to be input and output from

the custom processor from the main system processor. The data format is most

significant bit first, where the first byte is the number of bytes to be sent. Data is

clocked into the SPI receive buffer on each rising clock edge, when the slave-select

pin in low (SS=0). When SS=1, the byte is complete, and this is repeated until all

bytes are received (when the number of bytes received equals the value of the data in

the first byte). There is one command implemented currently which is the write data

command. The master processor uses this command to send the pressure and time

data to the slave GFM processor. The number of bytes is sent first (8), then the

command (0x00), then 4 bytes for the 32-bit value to be written and finally 2 bytes

for the address to write to. After the data is written to the slave processor, the master

unsigned divlu(unsigned x, unsigned y, unsigned z)
{

// divides unsigned (x || y) by z
int I;
unsigned t;
for(i = 1; i <= 32; i++)
{

t = (int)x >> 31; // all 1's if x(31) = 1
x = (x << 1) | (y >> 31); // shift (x || y) left
y = y << 1; // one bit
if((x | t) >= z)
{

x = x – z;
y = y + 1;

}
}
return y; // remainder is x

}
Figure 41: Conceptual division algorithm written in c-code

139

raises the STEP line to start a GFM time-step calculation.

Figure 42 shows 8 bytes being received by the SPI module. Notice how the data is

shifted into the “curbyte_rx” variable, representing the current byte being received.

Also notice the variable “numbytes_rx” as it counts up on each byte received. Lastly,

notice how the STEP signal is raised after the data is sent. This starts the GFM time-

step routine immediately after receiving the new pressure data. Currently you cannot

read out from the device to the master, but the implementation would be similar.

Figure 42: SPI Data Transfer

140

Implementation CharacteristicsImplementation Characteristics

The custom processor architecture described in previous sections was

implemented in VHDL for a Xilinx FPGA target. The specific device used was the

3s200vq100-4, chosen for its gate capacity and built-in block memory. The

implementation synthesis results are given in Figure 43, and the maximum frequency

allowed was reported as 22.5MHz. The cycle count per step for the custom

processor ranges from 4949 cycles for the non-gas forming portion of a dive to 6421

for the gas forming portion of a dive. On a particular dive to 180ft for 3 minutes, the

average cycle count was 5175. Recall that the exact cycle count depends on what

phase the program is in and so this has to be taken into consideration. Also note that

synthesis results depend on the specific design goals chosen in the synthesis tool, and

it is noted here that the design was simulated with a design goal of optimizing for area

and minimum power rather than for speed. In fact a maximum frequency of 22.5MHz

is perfectly suitable for a low-power application such as a dive computer, as long as

the performance, power, and area constraints are met.

141

Custom Tools (The Assembler, and Manual Compilation)Custom Tools (The Assembler, and Manual Compilation)

It should be mentioned that throughout this project as part of the

hardware/software design flow, custom tools needed to be developed in order to

complete the design. This section will describe the custom assembler used to

implement the custom processor program code. The assembler is used to convert

assembly code to machine code. The machine code output is in the form of 32-bit

words used to initialize the ROM of the FPGA target for program code. Since there

is no compiler for the custom processor, all high-level c-code for the custom

implementation was hand-assembled into custom assembly, and the assembler was

used to convert to machine code for use by the processor.

The assembler is a simple program, written in Java, that essentially parses the

assembly program and converts the instructions into machine code. There are a few

Selected Device : 3s200vq100-4

 Number of Slices: 1059 out of 1920 55%
 Number of Slice Flip Flops: 1277 out of 3840 33%
 Number of 4 input LUTs: 1846 out of 3840 48%
 Number used as logic: 1756
 Number used as Shift registers: 90
 Number of IOs: 9
 Number of bonded IOBs: 6 out of 63 9%
 IOB Flip Flops: 1
 Number of BRAMs: 4 out of 12 33%
 Number of MULT18X18s: 4 out of 12 33%
 Number of GCLKs: 5 out of 8 62%
 Number of DCMs: 1 out of 4 25%
Figure 43: Synthesis Results for Custom Processor on Xilinx 3s200vq100-4 Device

142

components needed by the assembler. First, there is an input file called a symbol

table, that contains the names of all variables in memory, along with their

corresponding number of 32-bit words each variable takes up in memory. The order

of the entries in the symbol table is important because they are assigned consecutive

addresses by the assembler, starting with address zero. The assembler first reads the

symbol table, and stores the names and addresses in a table. It then reads all labels

found in the program, and stores the names and program line addresses corresponding

to each label. The assembler also contains values of each machine code instruction

and contains code that can calculate addresses used in jumps, and branches.

To complete the assembly process, the program reads each line of the assembly

program code, and parses out each value. For each instruction, the values found on

each line of code are parsed and addresses are calculated, variables are found in the

symbol table, and all values are converted to binary numbers. All values are then

concatenated into one 32-bit instruction of machine code, and output to a new file.

There is also an output log that shows the conversion results for each line, along with

all variables found in the symbol table, and any errors that occurred. The output

machine code is simply a file of 32-bit instructions, one per line, and that data is used

to initialize the ROM in the VHDL design of the custom processor.

As an example of program code conversion from high level c-code, to

assembly, and finally to machine code, in Figure 44 is a simple selection of code from

the GFM program. Note that since the if-compare instruction was implemented in the

143

ISA, the comparison and if-statement from c-code is implemented with only 2

instructions, plus the branch target with the label “IF1”. The value of p[nx] in this

case is assumed to be in register R24. The entire fixed-point c-code program was

converted in this way, and the entire resulting machine-code program was then

written into the ROM initialization in the VHDL code for the custom processor in

order to run the program.

One more note should made here on the topic of compilation techniques. Since

the assembler for the custom architecture was created with the use of a compiler, it is

noted that compilation techniques to produce efficient assembly code were done

manually. This is important because any efficient use of a processor that runs from

program code needs to have the code produced efficiently and correctly, and some

techniques can improve performance drastically when correctly implemented. For

example, the IAR compiler tools that are used with TI MSP430 Family processors,

// C-code
if(p[nx] < fpZERO)
{

p[nx] = fpZERO;
}

// assembly code
OP_IF_CMP IF1 R24 RZERO LT
OP_STRX2 p NOADDR RZERO 1
IF1: OP_NOP

// machine code
11010000000000000101100011110000
01110000011111111111111111001001
00000000000000000000000000000000
Figure 44: High-level c-code conversion to assembly and custom machine code

144

ARM processors, and others, uses several common techniques when, for example,

optimizing for speed. One such technique is called loop unrolling, and is particularly

useful with pipelined designs. An illustration of a few compilation techniques can be

aided with the following code segment, from the original floating-point version of the

algorithm code:

The code involves setting the 168 array variable q values given the current value of

variables q, pold, poldold, beta, and delt. There is one outer loop that executes 21

times and one inner loop that executes 8 times. Now, the first optimization one can

notice is that the values for pold and poldold are independent of the inner loop, that is,

they are constant throughout each iteration of the inner loop, and they can therefore

be taken outside of the inner loop. In fact, in this program beta, and delt, are

constants, and so each beta[ns]*delt can be pre-calculated and taken out of the loop as

well (this is also called “common subexpression elimination” because the calculation

is unnecessarily repeated if left unoptimized).

Another observation is made that for the inner loop, there is no inter-loop

dependence. In other words, regarding loop variable ns, the calculation for q[1][nx]

for(int nx = 0; nx < 21; nx++) {
for(int ns = 0; ns < 8; ns++) {

q[ns][nx] = (q[ns][nx] + pold[nx] - poldold[nx]) -
(beta[ns] * delt * q[ns][nx]);

}
}

145

does not depend in any way on the calculation of q[0][nx], and so goes for all values

of ns. This means the inner loop can be in fact “unrolled”, or in other words, the

iteration of the loop calculation is unnecessary, and any convenient or efficient

ordering of calculating each individual value q[ns][--] can be done within each outer

loop iteration. To illustrate this, suppose we pre-calculate all values of pold[nx]-

poldold[nx] as the first operation on each “nx” loop. We then calculate all values of

(beta[ns] * delt * q[ns][nx]) for all values of ns, and unroll the final calculation for q.

The code might look as below:

Now, in assembly, there is even one more optimization that can take place,

which is that if the common operations are interleaved across inner loop iterations,

this can lend itself well to making full use of the pipeline. For example, because we

know the inner loop iterations are independent, and we plan to unroll them, we can

for(int nx = 0; nx < 21; nx++) {
tmp1 = pold[nx] – poldold[nx];
tmp2 = (beta0delt * q[0][nx]);
tmp3 = (beta1delt * q[1][nx]);
 ...
tmp9 = (beta7delt * q[7][nx]);
// --------------------------------
q[0][nx] = (q[0][nx] + tmp1 – tmp2;
q[1][nx] = (q[1][nx] + tmp1 – tmp3;
 ...
q[7][nx] = (q[7][nx] + tmp1 – tmp9;

}

146

also split up their respective operations and run them in any order we choose. In

other words, it may be smarter to code all the q[0][nx] + tmp1 operations together

in order of ns, as opposed to completely finishing the calculation for each ns first.

This can be said for all the operations needed so that instead of ordering all ns=0

operations first, then ns=1, and so on, instead, all q+tmp1 operations are run, then all

(q+tmp1-tmp<ns+2>), and so on. For a pipelined design, this grouping of similar

operations allows the pipeline to process each operation (for example addition) in a

minimum average number of cycles, because of the way the pipeline works. For

example, in the custom assembly there is a section of code that corresponds to this

loop described here that reads:

The example code above shows additional operations that correspond to interleaved

operations from the unrolled inner loop, and each is processed in 1 effective cycle

because they can be easily pipelined. It is only be careful inspection and manual

compilation that resulted in the code being programmed this way, taking advantage of

knowledge of the specific hardware. This and similar techniques is normally the

OP_ALU NOADDR R13 R3 R21 ADD # R21=q[0][nx] + (tmp1)
OP_ALU NOADDR R14 R3 R22 ADD # R22=q[1][nx] + (tmp1)
OP_ALU NOADDR R15 R3 R23 ADD # R23=q[2][nx] + (tmp1)
OP_ALU NOADDR R16 R3 R24 ADD # R24=q[3][nx] + (tmp1)
OP_ALU NOADDR R17 R3 R25 ADD # R25=q[4][nx] + (tmp1)
OP_ALU NOADDR R18 R3 R26 ADD # R26=q[5][nx] + (tmp1)
OP_ALU NOADDR R19 R3 R27 ADD # R27=q[6][nx] + (tmp1)
OP_ALU NOADDR R20 R3 R28 ADD # R28=q[7][nx] + (tmp1)

147

function of the compiler, but in this case this was done manually.

Low-Level Application Profiling (Fixed-Point, Custom Hardware)Low-Level Application Profiling (Fixed-Point, Custom Hardware)

At this point we want to see the final profiling results from the custom

processor core run using the GFM time-step routine as the benchmark. We have

already seen the results on various targets including the MSP430 16-bit processor,

various ARM core processors, and Simplescalar. We expect the design here to allow

for a relatively low cycle count per step meeting the design constraints, but also with

a smaller area and gate count than Simplescalar and possible ARM as well. A lower

cycle count and smaller area design would point to a more energy efficient design,

since energy is a function of power and time. Reducing the cycle count amounts to

reducing the amount of time the processor spends processing actively on, and

reducing the gate count and area amounts to reducing the number of transistors on,

and so the current and power is reduced as well.

TABLE V: Custom Core Design Speedup

Processor Floating-Point
Cycles / Step

Fixed-Point
Cycles / Step

Custom Processor
Speedup % versus

Float. Pt. / Fixed Pt.
Custom -- 5175 -- --

MSP430 (16-bit) 227000 1871129 97.7 99.7
Simplescalar -- 19711 -- 73.7
ARM7TDMI 45007 15272 88.5 66.1
ARM9TDMI 43071 13133 88.0 60.6

ARM10E 41271 13133 87.5 60.6
XScale 41271 13133 87.5 60.6

CortexM1 80496 33856 93.6 84.7
ARM1136J 45100 13133 88.5 60.6

Table V: Custom processor core speedup compared to various other architectures.

148

Table V shows the cycle count from the custom processor core versus other

processor targets, along with the speedup %. Note that each processor corresponds to

a cycle count for the the floating-point version program code, and fixed-point version

program. The speedup percentage compares each program version on the various

targets, versus the custom implementation. Remember that the Simplescalar

simulator simulates floating-point hardware, whereas all other targets listed are fixed-

point machines. The point is that we can compare the fixed-point implementation

from Simplescalar but we cannot compare the floating-point version, since the

compiler ported for Simplescalar cannot simulate floating point in software, only in

hardware. Under speedup %, the left column represents the speedup considering the

conversion from floating- to fixed-point, as well as the custom hardware design. In

other words, the left-column under speedup compares the floating-point program

running on various targets compared to the fixed-point version running on the custom

processor. The right column compares only the fixed-point implementation running

on various targets compared to the same running on the custom processor.

Considering the custom hardware only, we see a speedup of between 60 and 84% (not

including the MSP430). Considering both hardware and software design

optimizations, we see speedup of between 88 and 93% (again not including the

MSP430).

It is important to look also at the instruction profile for the custom architecture.

149

Figure 45 shows the percentage each instruction is called per time-step, while running

a 180ft dive for 3 minutes. Because the custom assembly code includes a lot of NOP

instructions, in fact the largest percentage of executed instructions are NOPs. After

that, we see multiplication and subtraction, followed by LOAD2 and then addition,

making up 50% of instructions. Indexed load and store take up 11%, and WHILE

instructions make up 2%. Division is now only 1% of instructions, but recall that

division is the only multi-cycle instruction and so it takes more time than others and

is not pipelined.

Note that in earlier plots like in Figure 32, the instruction profile in fact closely

matches the amount of time or cycles spent for each instruction, since all instructions

are pipelined and each is fetched roughly 1 cycle after the previous instruction. In

this case though, the division instruction breaks up this homogeneity. Figure 46 is a

Figure 45: Instruction Profile (Custom Hardware)

29%

20%
12%

11%

10%

7%
4%

2%1%1%1%1%1%0%

Instruction Profile

NOP
ALU_MUL
ALU_SUB
LOAD2
ALU_ADD
LDIX2
STRX2

WHILE
ALU_DIV
IF_CMP
STORE2
LDIXm1
LDLPCTR
LDINDX

150

more representative plot where the multi-cycle division instruction is taken into

account. The plot more accurately shows how much time is spent executing each

instruction per time-step. In Figure 46, the most time is spent in the division

instruction, and the NOPs are a less significant percentage. The rest of the

percentages follow similarly as in the previous figure.

It is interesting to note also that the total combination of load/store instructions

makes up only 15% of cycles. Arithmetic instructions in total make up 63% of

cycles. Control instructions like WHILE, IF_CMP, and LDLPCTR and LDINDX

makeup 3%, and the remaining instructions are NOPs. This points to the custom

CISC-based hybrid load/store design being very suitable for the application, since a

small percentage of time is spent on high energy load/store instructions, and most

instructions are pipelined arithmetic instructions for which the design is well-suited.

The NOPs are a side-effect of making the pipeline design less complicated, since the

need for them is a result of not having appropriate mechanisms in hardware to deal

with certain dependencies. On the other hand, a compiler or even assembler design

can include the needed NOPs easily, without requiring that they be explicitly written

into the program by the programmer. For this study, the NOPs required were written

into assembly as needed. One such example is before and after a division instruction,

NOPs are needed to be sure the pipeline is flushed before the division operation

starts. This causes division to require 40 cycles – an acceptable number considering

it is handled in hardware, but it is noted here that this could be improved.

151

Figure 46: Instruction profile (Based on cycles; Custom Hardware)

35%

19%
13%

8%

7%

7%
4% 3%2%1%1%0%0%0%

Instruction Profile (Cycles)

ALU_DIV
NOP
ALU_MUL
ALU_SUB
LOAD2
ALU_ADD
LDIX2

STRX2
WHILE
IF_CMP
STORE2
LDIXm1
LDLPCTR
LDINDX

152

Chapter 6: Results

To begin to look at the results of this study, we need to summarize what was

done, what was expected, and finally what resulted from the customized processor

core design and software optimizations. This section will cover performance, power

and area constraints, and how the custom design addressed these needs. The last

section will deal with real examples of how this new design could be used in a

practical product design, and what it would mean for the implementation.

Results: Power ConstraintsResults: Power Constraints

Recall that in Chapter 1 we defined the needs of the application, and in

particular design constraints 3 and 4. Constraint 3 specifies that the instantaneous

current should be such that a coin-cell battery such as the Sony CR2430 could be

used to power the device. Constraint 4 specifies that the life of the product must be a

minimum of 1 year considering a certain usage profile of one 30-minute dive per day.

To arrive at specific power consumption for the custom device, however, we have to

keep in mind that the design was completed on an FPGA using FPGA design tools.

FPGA tools can estimate power but in a dive computer system, FPGAs typically use

too much power to be considered for in-application use. On the other hand, there are

some low-power flash-based FPGA devices that, while expensive, could be used for a

real design. That being said, we will report here the power estimation results as given

in the Xilinx Power Analyzer software.

153

The first set of results is the power analysis organized by type, shown in Figure

47. What is shown are power figures in Watts (W), for the various component types

in the design. Also shown is the power broken up into quiescent power and dynamic

power. For this design, we are more concerned with dynamic power since the

quiescent power of an FPGA is much higher than an ASIC, and the two cannot be

compared accurately. Notice that the total dynamic power is 40mW, but the DCM is

the main contributor at 34mW. The logic, signals, BRAMs, and MULTs are the most

important component types here.

Figure 47: Xilinx Power Analysis by Type; Run @ 6MHz

154

In figure 48 we see how the entire datapath component (which includes ram,

rom, register file, ALU, controller, and virtually everything in the design besides the

SPI and clock manager) amounts to only 4mW of dynamic power. The main

contributor here is the ALU, which makes sense given our understanding of the

architecture, the instruction profile, and the device usage. Data is transferred only

every 6 seconds, and in between transfers, the device is computing thousands of

values using the ALU. At a voltage of 1.2V, the total current draw is 32.5mA, and

the 4mW coming from the datapath (not including th clock manager) amounts to

3.3mA. For constraint 3, although we are estimating what the result would be for an

ASIC, even with the power draw given for the FPGA the constraint could be met.

For constraint 4, we note that using equation 4 with TSPM=2611*10 (1 real-

time step and 2611 prediction steps per 6s), 30 minutes of dive time corresponds to

783,300 time-steps. The 783,300 time-steps at 6MHz amounts to 11.23 minutes of

Figure 48: Xilinx Power Analysis by Hierarchy; Run @ 6MHz

155

calculation (see Table VI). Given a battery with a 220mAh capacity, and considering

the 4mA from the datapath, the battery would last 293 days. This is not considering

the clock manager, but the analysis is still worthwhile. If the device is fabricated

using a technology such that it matches the 0.21mW/MHz at 1.8V that the

ARM7TDMI exhibits, then the device would draw 0.47mA on average at 6 MHz and

would last over 3.6 years given one 30 minute dive per day. Of course whether or not

the design can achieve the same power rating as another existing device depends on

many factors, but the calculations are given here for reference.

Results: Area ConstraintsResults: Area Constraints

Converting from gate counts on an FPGA implementation to equivalent gate

counts in an ASIC is not simple, and in fact many say that there is no real way to do it

accurately. One reason is that FPGAs contain routing and other logic not present in

ASIC designs, and any conversion is not equivalent inherently. Also, ASIC design

depend on specific cell libraries and libraries for memories and other components that

cannot be accurately estimated from FPGA results. Since the custom GFM processor

design was synthesized using FPGA tools, the best we can do is a very rough estimate

for gate count, for use comparing to other fabricated IC designs. Making this more

complicated is the fact the FPGA design tools have various so-called design goals

that allow the designer to specify whether the design should be optimized for power,

area, or speed. Xilinx used to output a value of “equivalent logic gates” after

156

synthesis of a design, but they have since removed this feature in latest versions of the

Xilinx ISE software. The only way to get a true gate count as would be found in an

ASIC, is to use an ASIC synthesis tool such as those made by Synopsis. That being

said, we wish to arrive at least at a rough estimate of transistor count in order to

compare to other designs.

As was reported in Figure 43, the design uses roughly 55% of the available

slices in the 200k gate 3s200 device. As mentioned in the Xilinx app note [43], the

designer of an FPGA needs to realize that gate counts or estimates for designs made

using FPGA tools depend very much on how well the design matches the architecture

of the FPGA. In Xilinx terminology and specifically for the Spartan 3 architecture,

one CLB equals 4 slices. Figure 49 gives a representation of the architecture of a

Spartan 3 FPGA [44]. The architecture is relatively simple, consisting of

“configurable logic blocks” (CLBs), Digital Clock Managers (DCMs), I/O Blocks

(IOBs), some Block Ram, and a few multipliers.

From the Spartan 3 datasheet [44], the total “Equivalent logic cells” equals

“total CLBs” x (8 logic cells / CLB) x 1.125 effectiveness. One “logic cell” equals

one 4-input lookup table plus a “D” flip-flop. Also one CLB equals 4 “slices”.

Calculating 55% used out of the total number of slices gives 1056 slices used, which

means 264 CLBs. The 264 CLBs equates to 2376 logic cells. On the other hand,

since numbers are given in Figure 43 for the number of flops and LUTs used from

within the slices, a more accurate number may be to use those numbers, reported as

157

1277 flops and 1846 4-input LUTs used.

To convert from number of “D” flops to number of transistors, we can use the

number 26 as given in [45]. The transistor count then is roughly 33k considering

flops only. The app note [43] explains that converting LUTs to number of gates is

difficult since LUTs can be used for different purposes. The gate count per LUT is

listed as between 1 and 9. For the sake of this study we will use 6 gates (roughly 24

transistors) per LUT, and so the 1846 LUTs amount to roughly 44k transistors,

bringing the total now to 77k. Transistor counts for memory are typically not

included in processor core comparisons, so the 4kb of RAM used in this design is

Figure 49: Xilinx Spartan 3 Architecture

158

noted, but not included in area estimation, especially since it is a relatively small

memory size that surely will not be a factor even in watch-style design. The design

does use 4 of the dedicated multipliers available, and so these need to be accounted

for. The author is using an estimate of 2200 gates required for each 18x18 signed

multiplier, taken from an article on EE Times. Using 4 transistors per gate the 4

multipliers make up 35k transistors, making out total 112k transistors, not including

memory.

Now, considering that an ARM7 is given [46] as using 2.2 sq. mm, and 74k

transistors, and an ARM9 is 4.15 sq. mm and 112k transistors (using 0.35um

technology), this design using 112k transistors (estimated) is quite a good result, and

in fact we can say here that this would meet the constraint in terms of area. Related

to area is power and energy, and so we want to expand on how area affects energy.

As we saw in Table V, this design amounts to 66% and 60% speedup when compared

to ARM7 and ARM9 respectively. The estimated transistor count for this custom

design amounts to a 51% increase in area for the ARM7 and 0% increase for the

ARM9. Table VI shows how the ARM7, ARM9, and the custom design compare in

terms of transistor count, cycle count, and energy. Energy here is an estimated

relative measure that uses cycles as runtime, and transistor count as a rough measure

of power; given as the multiplication of the two values and then normalized for the

ARM9 architecture. The last column gives percent change in energy for the custom

design versus the other two.

159

TABLE VI: Transistor Counts and Energy, Custom vs. ARM7/9

Processor Cycles
/ Step

Transistors
(core only) Energy Normalized

Energy
% Change

Energy
Custom 5175 112k 580 0.39 --

ARM7TDMI 15272 74k 1130 0.77 -48.67
ARM9TDMI 13133 112k 1470 1.00 -60.54
Table VI: Transistor Counts and Speedup, Custom vs. ARM7/9

It is noted that this method used in this section for estimating gate counts and

energy is not very accurate, but does give a rough sense of where the custom design

falls in comparison to the other architectures. The area constraint for this design was

given by Constraint 5, and it stated that the design should be able to fit within a 12 sq.

mm area. Since the ARM9 is quoted as requiring only 4 sq. mm, and because our

transistor count estimate is exactly the same as for the ARM9, we can conclude that

we should be able to meet this constraint with the same or more advanced technology

node. Another rough validation (without requiring complex area estimation

techniques) is to note that since the design already meets the constraint as designed

(and using only a fraction of the device resources) in the 100-pin VQ100 package

Xilinx device used in the study, it would surely meet the constraint if fabricated into

an ASIC.

160

Results: Performance ConstraintsResults: Performance Constraints

Recall that in Chapter 1 we defined the needs of the application, and in

particular design constraint 2b. Constraint 2b requires that the time per GFM time-

step be less than 1.149ms in duration. Recall that this was designed such that the 7

predictions and 1 real-time time-step as specified in Chapter 1 could be completed

within 6 seconds, at 50% duty. This is a hard real-time bound that takes into account

a real-time operating system that takes advantage of low-power processor states.

Note also that this is essentially equivalent to a processor being able to complete 2611

time-steps within 3s at 100% duty (active on 100% of the time). It was also noted

that in order to calculate the amount of time required by the implementation to

complete 1 time-step, the operating frequency, and cycle count per step needs to be

known.

TABLE VII: Time Per Step vs. Frequency

Processor Cycles /
Step

TPS @
2MHz (ms)

TPS @
4MHz (ms)

TPS @
6MHz (ms)

TPS @
8MHz (ms)

Custom 5175 2.59 1.29 0.86 0.65
ARM7TDMI 15272 7.64 3.82 2.55 1.91
ARM9TDMI 13133 6.57 3.28 2.19 1.64
Table VII: Time per step at various system frequencies. Fixed-point implementation.

To be able to determine whether this design meets Constraint 2b, Table VII

gives the time per step at various frequencies, for the custom design as well as ARM7

and ARM9 target architectures. It is important to note that although Table V gives

cycle counts and % speedup, that is not enough to determine whether a hard real-time

161

bound can be met. Only by calculating at specific frequencies can we understand the

practical impact of the custom design, or other designs for that matter. What we see

is that for frequencies of 8MHz and below, the only architecture that can meet the

performance constraint is the custom architecture. In fact, the custom design meets

the constraint at any frequency above 4.5MHz. Table VII is important because the

higher the system frequency the higher the current, and in an ultra-low power design

such as a dive computer the coin-cell batteries used may not be able to provide

enough battery life for the application. The challenge is to implement the design in a

low-power technology so that its full potential as a performance efficient processor

for GFM can be realized.

As an example battery life calculation, suppose a diver makes one, 60-minute

dive per day. As is given for the ARM7TDMI architecture performance

characteristics [46], suppose the processor consumes 1.5mW/MHz at 3V for a 0.35um

process. Now suppose a coin-cell battery with a 220mAh rating. Note that the 60-

minute dive requires (60min)*(2611*10 steps/min), or 1,566,600 GFM time-steps.

These time-steps would require 66.58 minutes to complete. Of course this cannot be

done since the dive is inly 60 minutes long, as this is expected since we know the

ARM7 cannot meet the constraint. On the other hand, if we can assume that given

some process technology that the custom design has the same power rating, then the

GFM calculations would take 22.45 minutes to complete, and at 6MHz, drawing an

average of 1.12mA at 3V, the device would last about 6.5 months - very reasonable

162

considering that the advanced GFM algorithm would be running in real-time.

Results: Summary ExampleResults: Summary Example

Suppose we now have constructed a watch-style high-end dive computer

(similar to the Oceanic OC1), and that the design includes a custom GFM processor.

The main system program has been modified to use the GFM algorithm, and as

explained in Chapter 1, sends and receives data to and from the GFM chip every 6

seconds. In between those 6 seconds, the GFM chip runs the real-time calculation, as

well as the 7 predictions as described in Chapter 1, for use in calculating the NO-D

time and the result of a safety stop.

Because the processor was custom designed, its performance is very high. It

runs GFM time-steps in roughly 5175 cycles, and assuming we run the system at

8MHz, each time-step only takes 650us. As reported in Table V, this amounts to

66%, 61%, and 74% speedup as compared to the same fixed-point algorithm code

version running on an ARM7, ARM9, and Simplescalar implementation,

respectively. Since we want to run most of the time in a low-power state, we run at

50% duty, and so we run only as many time-steps per second as will take ½ second to

complete. In this case, we run 769 steps per half-second, and we are in a low-power

state the other half-second. Every 6 seconds then, we have the ability to run 4615

GFM time-steps, while only active at high frequency half the time. Recall that to be

able to run all 7 predictions including the ascent with a safety stop every 6 seconds, it

163

was required that 2611 time-steps were completed within 6 seconds at 50% duty, and

so this is easily accomplished. In fact, if we only want to run 2611 steps, we need

only to be running calculations 28.2% of the time.

It is important to note also that the 7 predictions outlined in Chapter 1 are not

mandatory. These predictions were chosen as a very aggressive goal, and one that

would allow the product to calculate in real-time the effectiveness of a safety stop as

well as perform enough calculations needed to find the NO-D time. As was

mentioned in a previous section, if the product designer wished to do say only 3

predictions for use in finding the NO-D time, and instead using more cycles to do

other predictions or not use them at all, that is up to the designer. In fact for that

matter, the 50% duty cycle is not a strict requirement either, and a designer can

choose to set the amount of “active/on” time at 10% for longer battery life. This is

entirely up to the designer and the custom architecture gives the product designer the

freedom to choose, because of the increased efficiency the custom architecture

provides. The point is that because the architecture was designed with such

aggressive goals, the performance is so high that many more options exist in terms of

real practical product implementations.

Because of the low transistor count as reported in the second section of this

chapter, and given the simulation power analysis and interpretation in the first section

of this chapter, we can say that the device would in fact fit within a low-profile,

battery operated watch-style design and form factor, and the design is estimated to be

164

able to meet or exceeds the 1.5mW/MHz @ 3V rating given for the ARM7TDMI

device fabricated using 0.35um technology. The efficiency in terms of cycle count

has implications related to power. Given 1.5mW/MHz @ 3V, we can say we use

12mW @ 8MHz @ 3V, or 4mA @ 8 MHz @ 3V. Running 28.2% of the time at

8MHz and at 3V means that the average current would be 1.13mA. Given a 300mAh

battery such as the CR2430, the device would last 265 hours running continuously.

Considering typical usage of 1, 30-minute dive per day, the device would last 531

days or 1.5 years.

To summarize this example, a a high-end watch style dive computer device

could be designed using this custom processor design, using a coin-cell CR2430

battery, that could last over 1 year. This device would be running the GFM algorithm

in real-time, used to calculate the no-decompression time via 6 prediction

calculations, as well as 1 prediction made to show the efficacy of a standard safety

stop, within the real-time bounds of 6s indicated by the GFM inventors. Running at

only 28% duty, there is room for additional or supplemental predictions, and room for

other options in terms of calculating GFM-based outputs. For example, a PDC

designer might choose to use only 3 predictions for calculating the NO-D time, and to

use the remaining cycles available to calculate the effect of three different safety

stops, or maybe reduced or increased ascent/descent rates. This additional capability

afforded by the custom design allows the designer freedom to utilize GFM in a dive

computer in a way that would not be possible otherwise, using off-the-shelf

165

components. Of course there are devices that are powerful enough to compute GFM

time-steps in a small number of cycles, but to compete with this custom design they

would need to be able to do it at a low frequency and at low power as well.

On the other end of the spectrum, this time considering a less demanding

application, the custom design could be used to run calculations for a very simple

device as well, with equally useful benefits. Suppose a dive computer manufacturer

wishes to build a low-end computer. The low-end computer might use a larger

battery (since the overall shape is larger and possibly even hand-held), and might

have less demanding need for GFM predictions. In this case, the custom processor

still affords the same efficiency running GFM calculations, and the designer has the

freedom to choose either a lower frequency, or change the duty cycle while still

meeting the long battery life requirements of the product. Since the number of time-

steps is reduced for the less demanding application, there is room to reduce the

system frequency while still meeting the real-time requirements.

In terms of manufacturing, as in the past, fabricating your own custom IC is an

expensive endeavor. Typical costs can be in the millions of dollars, and for a small

company like a dive computer manufacturer this can be prohibitive. On the other

hand, there are several alternatives. One is to have a so-called “Structured ASIC”

manufactured. This essentially amounts to programming the top layer of an

otherwise pre-determined silicon die with a custom design, such that the cost of

creating this custom IC is much lower than a full custom IC. For example, one

166

company called eASIC quoted (on 3/28/08) their software at $30k (NRE), and the

cost for 1,000 prototypes at $14,950 ($14.95 each). This is relatively expensive

compared to GPP tools, but magnitudes less than a full ASIC design cost. The

benefit is that you get custom IC's at costs much lower than FPGAs, and almost

comparable to GPPs, but with the high efficiency and low area and power that the

custom design provides.

Another option for implementation is a low-power flash-based FPGA. These

are quite expensive devices compared to GPPs, but require no fabrication, and have

very good power and area characteristics. For example, the Actel Igloo Nano series

AGLN250 FPGAs have up to 250k system gates, 36k bits of RAM, and exhibit a

typical 24uW power draw. The quiescent current is 34uA at 1.5V, and 1.8uA in sleep

mode. The methodology is quite complicated to calculate dynamic power, but

essentially amounts to figuring out what resources are being used, and summing up

all the power from each. Of course the power used depends on device utilization and

the frequency and amount of switching. The device comes in various packages

including a 100-pin QFP package that would easily fit inside even the most

demanding watch-style designs. These devices sell for under $20 in quantities of

100+, and design software is relatively inexpensive, even coming with a free 1 year

license.

167

Results: Overall SummaryResults: Overall Summary

The Gas Formation Model scuba diving algorithm and its related target

application of a low-power, small footprint, battery-operated and safety critical scuba

dive computer was detailed in Chapter 1. Constraints for such a design were detailed

in terms of performance, area, and power. In Chapter 2, sources of CMOS power

were discussed and common low energy hardware design techniques were presented.

Chapter 3 presented characteristics and trade-offs for existing implementation options

for implementing the GFM algorithm in a dive computer system, and Chapter 4

discussed the concept of a hardware/software design flow, in particular, required to

design a custom processor for implementing GFM.

Chapter 5 detailed how an in-order, pipelined, 32-bit, custom hybrid

architecture processor was designed for implementing GFM inside dive computer.

Important steps such as hardware/software partitioning, high- and low-level

application profiling, floating-point to fixed-point conversion, instruction set

architecture (ISA) design, processor core architecture design, custom functional unit

(CFU) design and toolset design were detailed as they related to the design flow. The

design included a floating-point to fixed-point algorithm conversion, followed by a

manual compilation into assembly code for the custom architecture. Chapter 6

presents the results of the design, again in terms of performance, area, and power.

The efficient design exhibits an instruction profile that uses only 15% of cycles for

load/store operations, and the majority (63%) of operations performed are pipelined

168

arithmetic instructions. The custom design meets the real-time performance

requirements at any frequency above 4.5MHz, and outperforms the popular ARM7

architecture by a factor of 3, exhibiting a speedup of 66%, and has been estimated to

be able to meet the power and area requirements of the application as well.

Given a practical design example, the conceptual device was shown to be able

to last over 1.5 years on a 3V coin-cell battery with 300mAh capacity, given a

particular usage profile. Additional practical design options were given in order to

allow the designer to take full advantage of the GFM algorithm, while still meeting

various design constraints for more or less demanding applications. Finally, three

real implementation options for the custom design were discussed. This custom

design was shown to have promise as a real product in industry, and work is ongoing

to create its first prototype working within a real dive computer system.

References

[1] S. Crow; J. Lewis, "Dive computer and method for determining gas formation," US Patent 7,313,483 B2.

Dec.,25,2007.

[2] S. Crow; J. Lewis. (2008,Third Quarter). Introducing the Gas Formation Model. The Undersea Journal from

Professional Association of Diving Instructors [Print]. pp 57-59.

[3] B. Wienke, "," in Technical Diving in Depth, Flagstaff, AZ: Best Publishing Company, 2001, pp. 3-5, 67-110,

131-160, 257-305.

[4] J. Lewis; K. Shreeves, "," in Decompression Theory, Dive Tables, and Dive Computers, 2nd Ed. Santa Ana, CA:

International PADI Inc, 1993.

[5] PADI. About Padi [Online]. Available: http://www.padi.com/scuba/about-padi/

[6] Scuba Diving Magazine. (2009, Aug. 7) Digging Deep on 2009's New Dive Computers [Online]. Available:

http://www.scubadiving.com/gear/dive-computers/2009/08/digging-deep-on-2009s-new-dive-computers/

[7] C. Passerone, "Real time operating system modeling in a system level design environment," in IEEE International

Symposium on Circuits and Systems., 2006, pp. 2549-2552.

[8] Z. Murtaza; S.A. Khan; A. Rafique; K.B. Bajwa; U. Zaman;, "Silicon real time operating system for embedded

DSPs," in International Conference on Emerging Technologies., 2006, pp. 188-191.

[9] F. Colaco; F. Cardoso, "Flying Objects: a modular real time object operating system," in 11th IEEE NPSS Real

Time Conference., Santa Fe, NM, 1999, pp. 543-546.

[10] NOAA, Dive Planning Forms, Tables & Formulas [Online]. Available: http://www.ndc.noaa.gov/dp_forms.html

[11] D. Chen; S. Dwarkadas; M.C. Huang; K. Shen; J.B. Carter, "Program phase detection and exploitation," in 20th

International Parallel and Distributed Processing Symposium., RI, 2006, 8 pp.

[12] A.S. Dhodapkar; J.E. Smith, "Comparing program phase detection techniques," in 36th Annual IEEE/ACM

International Symposium on Microarchitecture., 2003, pp. 217-227.

[13] Sony Micro Battery. Lithium Manganese Dioxide Batteries [Online]. http://www.sony.net/Products/MicroBattery/

[14] Apple. Lithium Ion Batteries [Online]. http://www.apple.com/batteries/

[15] Apple. Batteries - Iphone [Online]. http://www.apple.com/batteries/iphone.html

[16] Texas Instruments. Wireless Pelagic Dive Computer Extends Battery Life Using TI MCUs [Online].

http://www.dsp-fpga.com/news/db/?4001

[17] T. Glokler; H. Meyer, Design of Energy-Efficient Application-Specific Instruction Set Processors (ASIPs), 1st Ed.

Dordrecht, The Netherlands: Kluwer Academic Publishers, 2004, pp. 1-116.

http://www.padi.com/scuba/about-padi/
http://www.dsp-fpga.com/news/db/?4001
http://www.apple.com/batteries/iphone.html
http://www.apple.com/batteries/
http://www.sony.net/Products/MicroBattery/
http://www.ndc.noaa.gov/dp_forms.html
http://www.scubadiving.com/gear/dive-computers/2009/08/digging-deep-on-2009s-new-dive-computers/

[18] L. Yann-Hang; K.P. Reddy; C.M. Krishna, "Scheduling techniques for reducing leakage power in hard real-time

systems," in 15th Euromicro Conference on Real-Time Systems., 2003, pp. 105-112.

[19] Z. Xiaoying; Y. Jiangfang; D. Dong; X. Cheng, "Leakage Power Reduction for CMOS Combinational Circuits,"

in 8th International Conference on Solid-State and Integrated Circuit Technology., 2006, pp. 1621-1623.

[20] L. Dake, Embedded DSP Processor Design, 1st Ed., Burlington, MA: Morgan Kaufmann Publishers, 2008, pp 24-

43, 87-152, 159-183, 217-237, 239-308, 369-396, 475-510, 597-616.

[21] P. Ienne; R. Leupers, Customizable Embedded Processors - Design Technologies and Applications, 1st Ed. San

Francisco, CA: Morgan Kaufmann, Morgan Kaufmann, 2007, pp 117-145,209-233,381-394.

[22] L. Zhang; Y. Zhang; W. Zhou, "Floating-point to Fixed-point Transformation Using Extreme Value Theory," in

Eighth IEEE/ACIS International Conference on Computer and Information Science., Shanghai, China, 2009, pp.

271-276.

[23] C. Shi; R.W. Brodersen, "Floating-point to fixed-point conversion with decision errors due to quantization," in

IEEE International Conference on Acoustics, Speech, and Signal Processing., 2004, pp. V41-V44.

[24] H.S. Stoker, "Gasses, Liquids, and Solids," in General,Organic,and Biological Chemistry, 5th Ed. Belmont, CA:

Brooks/Cole, 2008, ch. 7, pp. 172-173.

[25] Z. Bo; D. Blaauw; D. Sylvester; K. Flautner, "Theoretical and practical limits of dynamic voltage scaling," in 41st

Design Automation Conference., Ann Arbor, Ml, 2004, pp. 868-873.

[26] A. Forestier; M.R. Stan, "Limits to voltage scaling from the low power perspective," in 13th Symposium on

Integrated Circuits and Systems Design., Manaus, 2000, pp. 365-370.

[27] SimpleScalar LLC [Online]. Available: http://www.simplescalar.com/

[28] C. Weaver; R. Krishna; L. Wu; T. Austin, "Application Specific Architectures: A Recipe for Fast, Flexible and

Power Efficient Designs",in International Conference on Compilers, Architecture and Synthesis for Embedded

Systems, 2001, pp. 181-185.

[29] J.L. Hennessy; D.A. Patterson, Computer Architecture - A Quantitative Approach, 4th Ed. San Francisco, CA:

Morgan Kaufmann, 2007, Ch. 2-3, pp. 66-142,154-185.

[30] P. Biswas; V. Choudhary; K. Atasu; L. Pozzi; P. Ienne; N. Dutt, "Introduction of local memory elements in

instruction set extensions," in 41st Design Automation Conference., 2004, pp. 729-734.

[31] P. Biswas; N. Dutt; P. Ienne; L. Pozzi, "Automatic Identification of Application-Specific Functional Units with

Architecturally Visible Storage," in Proceedings Design, Automation and Test in Europe., Munich, 2006, pp. 1-6.

[32] J. Lee; K. Choi; N. Dutt, "Efficient instruction encoding for automatic instruction set design of configurable

ASIPs," in IEEE/ACM International Conference on Computer Aided Design., 2002, pp. 649-654.

http://www.simplescalar.com/

[33] Gschwind, M, "Instruction set selection for ASIP design," in Proceedings of the Seventh International Workshop

on Hardware/Software Codesign., Rome, 1999, pp. 7-11.

[34] N. Clark; H. Zhong; S. Mahlke, "Processor acceleration through automated instruction set customization," in 36th

Annual IEEE/ACM International Symposium on Microarchitecture., 2003, pp. 129-140.

[35] S. Kim; M.H. Sunwoo, "Low Power ASIP Architecture Optimization based on Target Application Profiling," in

IEEE International Symposium on Circuits and Systems., New Orleans, LA, 2007, pp. 3764-3767.

[36] S. Kilts, "," in Advanced FPGA Design: Architecture, Implementation, and Organization, Hoboken, NJ: John

Wiley & Sons, 2007, ch. 3, pp. 37-47.

[37] A.M. Nielsen; D.W. Matula; C.N. Lyu; G. Even (2000, Jan). An IEEE compliant floating-point adder that

conforms with the pipeline packet-forwarding paradigm. IEEE Transactions on Computers [Print]. volume 49

issue 1, pp. 33-47.

[38] Coware. Processor Designer [Online]. Available: http://www.coware.com/products/processordesigner.php

[39] Oceanic. Personal Dive Computers [Online]. Available: http://www.oceanicworldwide.com/p_computers.html

[40] J. J. Yi; D. J. Lilja; D. M. Hawkins, "A Statistically Rigorous Approach for Improving Simulation Methodology,"

in IEEE International Symposium on High-Performance Computer Architecture, 2003, pp. 281-291.

[41] M. Steinhaus; R. Kolla; J. L. Larriba-Pey; T. Ungerer; M. Valero, "Transistor Count and Chip-Space Estimation of

SimpleScalar-based Microprocessor Models," in Proceedings of the Workshop on Complexity-Effective Design,

2001, pp. 1-15.

[42] H. Warren, "Unsigned Long Division," in Hacker's Delight, Boston, MA: Pearson Education Inc, 2003, pp. 149.

[43] Xilinx. Gate Count Capacity Metrics for FPGAs [Online]. Available:

http://www.xilinx.com/support/documentation/application_notes/xapp059.pdf

[44] Xilinx. Datasheet Spartan 3 [Online]. Available:

http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

[45] Xilinx. Using Configurable Logic Blocks [Online]. Available:

http://www.xilinx.com/support/documentation/user_guides/ug331.pdf

[46] S. Segars, "The ARM9 Family - Higher Performance Processors for Embedded

Applcations," in International Conference on Computer Design: VLSI in Computers

and Processors, 1998, pp. 230-235.

http://www.xilinx.com/support/documentation/user_guides/ug331.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp059.pdf
http://www.oceanicworldwide.com/p_computers.html
http://www.coware.com/products/processordesigner.php

	List of Tables
	List of Figures
	Chapter 1: The Application
	Scuba Diving - Introduction
	Definition of Terms
	How GFM Works
	GFM Example – Real-Time FGV Calculation
	GFM Example – Prediction Calculations
	Dive Computer Systems (General)
	A GFM Dive Computer System
	C-Code Implementation of the GFM Algorithm
	A Simulation-Only Implementation Structure
	A True Real-Time Implementation Structure

	A Set of Visual Aids for GFM
	Standard Set of Dive Profiles
	Design Constraints for a GFM Dive Computer
	Performance Constraints
	Power Constraints
	Area Footprint Constraints

	Chapter 2: Low-Energy Hardware Design
	Sources Of Energy in CMOS Circuits
	Techniques to Reduce Dynamic Energy Consumption

	Chapter 3: Implementation Options and Trade-Offs
	Custom Hardware Implementations and ASICs
	Application Specific Instruction Processors (ASIPs)
	Domain Specific and Digital Signal Processors (DSSPs, DSPs)
	General Purpose Processors (GPPs)
	Processor Architectures
	Processor Architectures - RISC and Pipelining
	Processor Architectures - CISC
	Processor Architectures – VLIW
	Processor Architectures – DSP
	Fetch Order, Cache, and Order of Execution

	Floating-Point to Fixed-Point Conversion
	Numeric Representations
	Conversion

	Chapter 4: Hardware/Software Co-Design and Design Flows
	ASIP Design Flow

	Chapter 5: Optimizing Hardware for GFM
	Summary
	High-Level Application Profiling (Floating-Point)
	HW/SW Partitioning
	Low-Level Application Profiling (Floating-Point)
	Floating-Point to Fixed-Point Conversion Results
	Low-Level Application Profiling (Fixed-Point)
	Instruction Set Architecture Design
	Basic Instructions
	Loop Instructions
	Control Instructions
	Special Instructions
	Instruction Set Details

	Processor Core Architecture Design
	Architecture
	The Datapath
	Memory
	The ALU
	The Serial Peripheral Interface

	Implementation Characteristics
	Custom Tools (The Assembler, and Manual Compilation)
	Low-Level Application Profiling (Fixed-Point, Custom Hardware)

	Chapter 6: Results
	Results: Power Constraints
	Results: Area Constraints
	Results: Performance Constraints
	Results: Summary Example
	Results: Overall Summary

	References

