

Embedded
Systems
Design Flow
using
Altera’s
FPGA
Development
Board (DE2-
115 T-Pad)

SPRING 2012

Ankita Goel
Hamid Mahmoodi

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 1

Table of Contents

Chapter 1: Introduction to the DE2-115 Development and Education Board ... 3

1.1 Overview of DE2-115 .. 3

1.2 Block Diagram of the DE2-115 Board .. 5

1.3 Getting Started .. 7

1.4 Control Panel Demonstration ... 15

Chapter 2: Hardware Design Flow Using Verilog in Quartus II ... 16

2.1 Introduction to Quartus II System Development Software .. 16

2.2 Design Flow (Hardware Only) ... 18

2.3 Binary Adder Example ... 19

Step by Step Binary Adder Tutorial ... 20

2.4 Introduction to System Builder ... 32

Chapter 3: Hardware and Software Co-design Flow ... 40

3.1 Introduction to Nios II Soft-Core Processor .. 40

3.2 Co-design Flow .. 42

3.3 Overview of System Integration Software SOPC Builder and Q Sys ... 43

3.4 Introduction to Nios II SBT for Eclipse .. 44

Binary Adder Tutorial Using Nios II ... 44

Chapter 4 : Video Generation for Text Display on T-Pad .. 51

Introduction .. 51

Hardware .. 51

Software .. 52

Step by Step ALU on T-Pad Tutorial .. 53

Hardware Setup .. 53

Step 1 : System Setup by using System Builder .. 53

Step 2: Quartus II – Hardware Setup .. 54

Step 3: SOPC Builder Hardware Setup .. 58

Software Setup .. 63

Basic Software Algorithm .. 64

Downloading the design to the board: ... 66

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 2

Link to the Video Demonstration: ... 67

Chapter 5 – Integrating Touch Interface of T-Pad .. 68

Introduction .. 68

Step by Step ALU on T-Pad with Touch Interface Tutorial .. 70

Software Setup .. 80

SOFTWARE Algorithm ... 81

Downloading the design to the board .. 83

Link of Video Demonstration .. 85

Chapter 6: Video Generation for Text and Image Display on T-Pad ... 86

Introduction .. 86

Step by Step ALU with image in background Tutorial .. 89

Hardware Setup .. 89

Software Setup .. 102

Downloading the design to the Board .. 104

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 3

Chapter 1: Introduction to the DE2-115

Development and Education Board

1.1 Overview of DE2-115
This device (FPGA Board) is specifically designed for to create, implement, and test digital designs using

programmable logic. Figure below shows the I/O ports in DE2-115. It shows the layout of the board and

indicates the location and connections of various components.

The following hardware is provided on the DE2-115 board:

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 4

Altera Cyclone® IV 4CE115 FPGA device

Altera Serial Configuration device – EPCS64

USB Blaster (on board) for programming; both JTAG and Active Serial (AS) programming modes are

supported

 2MB SRAM

 Two 64MB SDRAM

 8MB Flash memory

 SD Card socket

 4 Push buttons

 18 Slide switches

 18 Red user LEDs

 9 Green user LEDs

 50MHz oscillator for clock sources

 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks

 VGA DAC (8-bit high-speed triple DACs) with VGA-out connector

 TV Decoder (NTSC/PAL/SECAM) and TV-in connector

 2 Gigabit Ethernet PHY with RJ45 connectors

 USB Host/Slave Controller with USB type A and type B connectors

 RS-232 transceiver and 9-pin connector

 PS/2 mouse/keyboard connector

 IR Receiver

 2 SMA connectors for external clock input/output

 One 40-pin Expansion Header with diode protection

 One High Speed Mezzanine Card (HSMC) connector

 16x2 LCD module

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 5

1.2 Block Diagram of the DE2-115 Board
Figure gives the block diagram of the DE2-115 board. To provide maximum flexibility for the user, all

connections are made through the Cyclone IV E FPGA device. Thus, the user can configure the FPGA to

implement any system design.

Block Diagram of DE2-115

Following is more detailed information about the blocks of the Figure below:

FPGA device:

•Cyclone IV EP4CE115F29 device

•114,480 LEs

•432 M9K memory blocks

•3,888 Kbits embedded memory

•4PLLs

FPGA configuration:

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 6

•JTAG and AS mode configuration

•EPCS64 serial configuration device

•On-board USB Blaster circuitry

Memory devices:

•128MB (32Mx32bit) SDRAM

•2MB (1Mx16) SRAM

•8MB (4Mx16) Flash with 8-bit mode

•32Kb EEPROM

SD Card socket:

•Provides SPI and 4-bit SD mode for SD Card access

Connectors:

•Two Ethernet 10/100/1000 Mbps ports

•High Speed Mezzanine Card (HSMC)

•Configurable I/O standards (voltage levels:3.3/2.5/1.8/1.5V)

•USB type A and B

 Provide host and device controllers compliant with USB 2.0

 Support data transfer at full-speed and low-speed

 PC driver available

•40-pin expansion port

 Configurable I/O standards (voltage levels: 3.3/2.5/1.8/1.5V)

•VGA-out connector

 VGA DAC (high speed triple DACs)

•DB9 serial connector for RS-232 port with flow control

•PS/2 mouse/keyboard

Clock:

•Three 50MHz oscillator clock inputs

•SMA connectors (external clock input/output)

Audio:

•24-bit encoder/decoder (CODEC)

•Line-in, line-out, and microphone-in jacks

Display:

•16x2 LCD module

Switches and indicators:

•18 slide switches and 4 push-buttons switches

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 7

•18 red and 9 green LEDs

•Eight 7-segment displays

Other features:

•Infrared remote-control receiver module

•TV decoder (NTSC/PAL/SECAM) and TV-in connector

Power:

•Desktop DC input

•Switching and step-down regulators LM3150MH

1.3 Getting Started
After getting the overview of the kit, next step is to download the necessary software development tools

and drivers for the DE2-115 that will connect to your host computer via USB.

Required Downloads:

The majority of resources listed below are found on the DE2-115 and T-Pad System CDs. These CDs can

be downloaded from Terasic’s website free of charge. Students should first download these files onto

their personal computers. Each student will need to become a Terasic member. This is done on first

download attempt.

Resources on the System CD are not available for single file download directly from Terasic website.

Specific files, unavailable for download, is available from System cd.

To download Quartus II and Nios II:

https://www.altera.com/download/dnl-index.jsp

To download system CDs:

1. DE2-115 resource site:

http://www.terasic.com.tw/cgi-bin/page/archive.pl?

%E2%80%A8Language=English&CategoryNo=139&No=502&PartNo=4

2. TPad resource site:

http://www.terasic.com.tw/cgi-bin/page/archive.pl?

%E2%80%A8Language=English&CategoryNo=139&No=550&PartNo=4

Downloading Quartus II and Nios II

https://www.altera.com/download/dnl-index.jsp
http://www.terasic.com.tw/cgi-bin/page/archive.pl?%20%E2%80%A8Language=English&CategoryNo=139&No=502&PartNo=4
http://www.terasic.com.tw/cgi-bin/page/archive.pl?%20%E2%80%A8Language=English&CategoryNo=139&No=502&PartNo=4
http://www.terasic.com.tw/cgi-bin/page/archive.pl?%20%E2%80%A8Language=English&CategoryNo=139&No=550&PartNo=4
http://www.terasic.com.tw/cgi-bin/page/archive.pl?%20%E2%80%A8Language=English&CategoryNo=139&No=550&PartNo=4

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 8

Step 1) Go to the link below:

https://www.altera.com/download/dnl-index.jsp

Step 2) Click on the icon “Download Windows Version” and run The Altera Software Installer will open

Step 3) Click Next then Agree to the Terms and Conditions, then click Next

https://www.altera.com/download/dnl-index.jsp

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 9

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 10

Step 4) Select the Destination where the Altera folder is going to be located and the name of the folder

Click next

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 11

Step 5) Select everything except for the Components that say “Paid”. The Paid version is a 30-day trial

after that you will not be able to use it. Click next

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 12

Step 6) Click next for the DSP Builder setup

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 13

Step 7) A summary of what will be installed to the computer will appear

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 14

Step 8) After the installation is complete click finish.

Using these steps, Quartus and Nios software can be downloaded and ready to be used on the board.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 15

1.4 Control Panel Demonstration
To get familiarized with the board, Control Panel can be used which automatically uses Quartus II to run

a demonstration on the DE2-115. A video link demonstrating the same is given below:

http://www.youtube.com/watch?v=EtDDd07yUnw

Step 1: Connect the DE2-115 to your host computer through the USB port. Turn on the power by

pressing the big red push-button. Make sure that SW-19 is set to Run.

Step 2: open <system cd>\DE2_115\DE2_115_tools within this file you will find control_panel.exe. With

the DE2-115 connected to your host computer, execute this Control Panel file by double-clicking its icon.

 

Note: If your Operating System is running on 64 bit, click on win7_64bits and then click in the DE2_115

Control Panel

Step 3: It may take a few minutes for the

program load. Control Panel provides a GUI

for you to play with all the peripherals on the

DE2-115.

Once the Control Panel is open, follow the

pattern shown in the picture below and type

your name into the LCD Display:

A link describing the DE2-115 board is given below: http://www.youtube.com/watch?v=720t8fNcJKM

http://www.youtube.com/watch?v=EtDDd07yUnw
http://www.youtube.com/watch?v=720t8fNcJKM

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 16

Chapter 2: Hardware Design Flow Using

Verilog in Quartus II

2.1 Introduction to Quartus II System Development Software
This chapter is an introduction to the Quartus II software that will be used for analysis and

synthesis of the DE2-115 Development and Education Board. Throughout this chapter hardware

description languages like Verilog will be used for coding. The Altera Quartus II design software

provides a complete, multiplatform design environment for system-on-a-programmable-chip

(SOPC) designs. Also an example will be implemented in a tutorial using the hardware

description language (Verilog) and the DE2-115. Below are some suggested readings before

going into the next section.

Quartus II Development Software Reading Resources:

(In suggested chronological reading/watching order)

1) Introduction to Quartus II Software

 Version 11.0 (Latest):

 http://www.altera.com/literature/manual/quartus2_introduction.pdf

• NOTE: The link to the newer version of the later version (11.0) provides a very

brief overview, whereas the older version (listed below) gives more in depth information.

 Version 10.0:

 http://www.altera.com/literature/manual/archives/intro_to_quartus2.pdf

• focus: Emphasis is placed on the following sections, although a greater

knowledge base is achieved by reviewing the entire document:

http://www.altera.com/literature/manual/quartus2_introduction.pdf
http://www.altera.com/literature/manual/archives/intro_to_quartus2.pdf

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 17

a) Design Flow- Introduction (Page No. 11), Graphical User Interface Design

Flow (Page No. 12)

b) Design Entry (Page No. 29) Introduction, Creating a Project(Page No. 30),

Creating a Design(Page No. 31), later this document can be used for a specific

method of design entry (like Verilog, Block Diagram, VHDL, etc.)

c) Programming & Configuration (Page No. 93) Introduction, Creating and

Using Programming Files

2) Using Verilog for Quartus II Design:

 <system cd>\DE2_115_tutorials\tut_quartus_intro_verilog.pdf

• focus: This tutorial guides through the simulation process so that the project can

be implemented without needing access to the DE2-115.(familiar with quartus and Verilog)

(PG No 1-21)

3) Quartus II Handbook: http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

• NOTE: This resource is in depth and is only necessary to briefly overview the

material in order to know where information can be found on an as needed basis.

http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 18

2.2 Design Flow (Hardware Only)

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 19

2.3 Binary Adder Example
 Now that you are getting familiar with Quartus II and the DE2-11 a tutorial discussing

the basic steps for using Quartus II is discussed below.

 In this example, the components from the DE2-115

Board that will be used are:

 7 Segment Hex Display,

 Switches,

 8 Red LEDs, and the

 LCD Display

 As shown in the picture above the switches and LED’s are synchronized and represent a

4 bit binary number. The values of these binary numbers are displayed on the 7 segment display

and LCD. Moreover the addition of these two binary numbers is also displayed on the seven

segment display and LCD.

*To learn more in detail about the 7 Segment Hex Display also there is a short video about 7 segment display () and

LCD refer to the last 5 pages of this example

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 20

0The Binary Adder tutorial teaches how to

 Connect the conputer with the DE2-115.

 Create a new project using Quartus II.

 Create a Verilog file.

 Put I/O pin locations in the assignment editor.

 Synthesize your design.

 Use system builder.

1. The youtube video for the complete procedure can be accessed from the link given below:

http://www.youtube.com/watch?v=PB9wk5Wl_Ec

2. The example can also be implemented by using the written instructions given below:

Step by Step Binary Adder Tutorial

Step 1: Install the USB driver for the FPGA development board. This step will only be

done for the first time the FPGA board is used.

a) On the FPGA board, connect the power plug to an outlet. Connect the USB cable

from your computer to the FPGA board in port J9 (closest to the power outlet).

b) Open the start Menu and Search Windows for “Device Manager”-> Scroll down

to “Other Devices”-> A new window called “USB Blaster Properties” will open.

http://www.youtube.com/watch?v=PB9wk5Wl_Ec

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 21

c) Under the tab “Driver” select “Update Driver” -> A new window will pop up and

you’ll select “Browse my computer for driver software

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 22

d) In the field “Search for Drivers in this location” browse your computer to create

the following path: C: - > Altera -> 11.0 -> Quartus -> Drivers -> USB Blaster

then select “Browse”

e) You may need to click “allow” to complete the process.

Step 2: Open the Quartus II software

a) Select “Create New Project Wizard”

b) In the first step (1 of 5) you will need to create a directory for your project and

name your new project.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 23

c) In step 2 of 5, you will add any previously created files to your project. Make

sure to go to the lower portion of screen and select “Add User Libraries”.

i. A new window opens. Go to “Global Library Name” and to the right of

Global libraries click on “…”

ii. Go to “Computer” then go to the “C drive” (where the Altera folder is

located)

iii. Go to on the Altera folder then go to the “quartus” folder

iv. Go to on the “libraries” folder

v. Add the “MegaFunctions” library and click “Select folder” then “OK”

d) In step 3 of 5, “Family & Device Settings” you will adjust the family and

device you want to target for compilation.

i. Device family is Cyclone IV E.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 24

ii. Target device is “Specific” and select our device from “Available

Devices”EP4CE115F29C7. Click “Next”

e) In step 4 of 5, EDA Tool Settings do not make any adjustments. Click “Next”

f) In step 5 of 5, Summary, click “Finish to create your new project.

Step 3: You will need to create a new Verilog file for your project.

a) Under “File” select “New”

b) Under “Design Files” select “Verilog HDL File”

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 25

c) Click “OK”

d) A new Verilog file will open. An asterisk will appear near the file name

whenever unsaved changes have been made.

~ This tutorial focuses on Verilog (a hardware description language), In order to

program the Altera DE2-115

Step 4: Copy the Verilog Code from the file Binary_Adder.txt file into Quartus II

Note: Binary_Adder.txt is located in the Codes folder

Step 5: You will use the DE2-115 manual to determine ports and PIN assignments.

Assignments->assignment editor (Ctrl+Shift+A) set all components to their appropriate locations

and voltage

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 26

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 27

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 28

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 29

Step 6: For any project it is required to create pin assignment from the DE2-115 manual.

a) Under “Assignments” select “Assignment Editor”

b) Add each port under “Assignment Name” –each port will need two

assignments:

i. PIN location

ii. I/O requirement.

Note: This process is very lengthy and in the future can be bypassed using “System

Builder”(PG No. 15).

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 30

Step 7: When the Verilog code is finished, and all assignments are done, you will be

ready to compile your design and program the device.

Step 8: At the top of the screen, select the “Play” button to begin the automatic

compilation process. Watch in the lower left screen as the compilation process occurs.

This may take several minutes.

(Step 7)

Step 9: When it has compiled, double click on “Program Device”.

a) Push the large red button on the FPGA board to turn on the power.

b) Programmer will open, and at the top left “USB Blaster” will appear. If it does

not, click on “Hardware Setup”. Select “USB Blaster” and click ok.

c) When “USB Blaster” appears next to “Hardware Setup” select “Start” and

watch the upper right corner as the design is implemented.

d) When the “Progress” bar has reach 100% you may test your design on the

FPGA board.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 31

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 32

2.4 Introduction to System Builder
Alternate way to do pin assignments with the help of System Builder

System builder is a GUI that creates pin assignment by selecting the components that will be

needed for a project. System builder saves time by creating the pin assignments for you and

letting you choose what components you need. For Example:-

1) Open DE2_115_tools->DE2_115_system_builder to find DE2_115_SystemBuilder.exe

2) Name the project under Project Name: in this Tutorial we name or project Binary_Adder

3) Check all Components that you will be using: in this Tutorial we are using CLOCK,

LEDx27, Buttonx4, 7-Segementx8, Switchx18, and of course the LCD.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 33

4) Click Generate

5) Create a directory for your project and then click save

6) To open this project open the .qpf file

7) Delete the verilog code that System Builder created then copy the code from

Binary_Adder_System_Builder(is located in the codes folder)

8) At the top of the screen, select the “Play” button to begin the automatic compilation

process. Watch in the lower left screen as the compilation process occurs. This may take

several minutes.

(Step 7)

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 34

9) When it has compiled, double click on “Program Device”.

a) Push the large red button on the FPGA board to turn on the power.

b) Programmer will open, and at the top left “USB Blaster” will appear. If it does

not, click on “Hardware Setup”. Select “USB Blaster” and click ok.

c) When “USB Blaster” appears next to “Hardware Setup” select “Start” and

watch the upper right corner as the design is implemented.

d) When the “Progress” bar has reach 100% you may test your design on the

FPGA board.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 35

7 Segment Hex Display

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 36

In this project we used four 7-segment displays to show the values of switches being

turned on in binary. In a 7- segment display a high logic level will turn off the led and a low

logic level to a segment will turn the led on. To represent an LED with a seven-bit value we use

the values zero through six. To display a zero to a segment we set the hex value to be equal to

7b’1000000. This is because a zero will have all led on but the center led (number 6 on the figure

above). The code also uses a function to simplify the task of representing a bit value to a hex

value. Since the function DISPLAYNUMBERS only has one output it seemed like a function

instead of a task. In the function we have only one input value that represents a 4 bit switch

value, this value is passed through a series of if else statements to determine the hex value. At the

end of this program we assign all appropriate values to the represented LEDs.

There is a quick example of getting the LED’s, Switches, Keys, and 7 segment Hex

Display to function properly in the link below that goes more in detail about the 7 segment

display.

http://www.youtube.com/watch?v=SNCZGqWEtJg

http://www.youtube.com/watch?v=SNCZGqWEtJg

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 37

16 x 2 LCD

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 38

To display characters to an LCD there is a series of steps that need to be done before to

initializing the LCD module. Since Verilog doesn’t read code sequentially we created a case

statement that will allow the initialization to be done in order. This is done by changing the state

of the case to the next step in every case statement. The steps performed are RESET1, RESET2,

RESET3, FUNCTION SET, DISPLAY OFF, DISPLAY CLEAR, RETURN HOME, CHANGE

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 39

LINE, DROP LCD, HOLD, DISPLAY ON, and MODE SET AND PRINT STRING. These

reset needs to be done three time to because we need to initialize enable to high and register

select and read/write to low signals. These steps are also done to communicate with the LCD to

determine if it will be an 8 or 4 bit data bus, this is done by setting the data bus equal to the hex

value eight(8’h38). Before we can write to the screen we need to clear the LCD display, this is

done by changing the data bus equal to 8’h01 (Start of heading). Finally when we need to display

the screen we set enable and read/write to high and reset to low, this is done because this allows

us to write data to the LCD. In the print string case statement we added an else if (index ==line1)

because without this the LCD wouldn’t know when the next line begin or the first line starts.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 40

Chapter 3: Hardware and Software Co-

design Flow

3.1 Introduction to Nios II Soft-Core Processor
1) Introduction to the Altera Nios II Soft Processor:

<system cd>\DE2_115_tutorials\tut_nios2_introduction.pdf

• focus: All of the information in this resource is needed for creating systems and

should be read carefully, as familiarity will greatly help students in avoiding time consuming

mistakes.

Nios II is an embedded processor architecture designed specifically for Altera’s FPGA boards.

An example of a Nios II processor system could be found on page 11 from Altera’s Nios II

Processor Reference Handbook. When implementing your board there is three different types

of CPU’s to choose from which are the NIOS II/fast, NIOS II/standard, and NIOS II/economy.

The main differences between the CPU’s are the balance between performance and cost.

NOTE: This figure taken from Altera’s Nios II Processor Reference Handbook:

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf page 11

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 41

NOTE: This figure taken from Altera’s Nios II Processor Reference Handbook:

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf page 18

2) Nios II Hardware Development:

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

• focus: This resource is an excellent overview of the basic requirements to creating

a system using QSys in Quartus II, instantiating the design in the project files,

implementation, and then creating the necessary software.

3) Nios II Processor Reference: http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf

• NOTE: This resource has a lot of detailed information which is not necessary to

complete most projects, but it is good to be familiar with document in the case of

troubleshooting.

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 42

3.2 Co-design Flow

Figure 1–2 shows the Nios II system development flow between hardware and software. This flow
consists of three types of development: hardware design steps, software design steps, and system design
steps.

NOTE: This figure taken from Altera’s Nios II Hardware Development Tutorial:

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 43

3.3 Overview of System Integration Software SOPC Builder and Q Sys

NOTE: This diagram was taken from Altera’s Nios II Software Developer’s Handbook,

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

System Integration Software

This software allows the designer to marry hardware and software. In order to use the Nios II

soft-core processor, a system must be designed using either SOPC builder or QSys (both are

accessed from Quartus II-> Menu -> Tools). QSys is a newer version of SOPC builder and it is

encouraged that students begin with QSys. This development tool primarily generates

the .sopcinfo file which is used in Nios II SBT for Eclipse to create the software project to run on

top of the FPGA design, utilizing the Nios II soft-core processor.

After creating a system to suit the students’ project needs, “Generation” (synonymous to

“Compilation”) automatically creates the necessary hardware files for low-level abstraction. A

main niosII module is created in this process, which is instantiated from the top-level hardware

file. This process is described as System Integration

Although much of the reading presented here applies to SOPC Builder, the information applies

also to QSys and an effort should be made to use QSys in place of SOPC Builder.

1) Introduction to the Altera SOPC Builder:

 <system cd>\DE2_115_tutorials\tut_sopc_introduction_verilog.pdf

2) QSys System Design: http://www.altera.com/literature/tt/tt_qsys_intro.pdf

• QSys main reference page: http://www.altera.com/products/software/quartus-

ii/subscription-edition/qsys/qts-qsys.html?GSA_pos=10&WT.oss_r=1&WT.oss=qSys

3) SOPC Builder User Guide: http://www.altera.com/literature/ug/ug_sopc_builder.pdf

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/tt/tt_qsys_intro.pdf
http://www.altera.com/products/software/quartus-ii/subscription-edition/qsys/qts-qsys.html?GSA_pos=10&WT.oss_r=1&WT.oss=qSys
http://www.altera.com/products/software/quartus-ii/subscription-edition/qsys/qts-qsys.html?GSA_pos=10&WT.oss_r=1&WT.oss=qSys
http://www.altera.com/literature/ug/ug_sopc_builder.pdf

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 44

3.4 Introduction to Nios II SBT for Eclipse

Eclipse allows the user to use the software that was executed by a Nios II processor-

based system in an FPGA. The user can configure the FPGA on the development board with

the pre-generated Nios II standard hardware system by downloading the FPGA configuration

file to the board.

1) Nios II Software Developer’s Handbook:

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

NOTE: Link is placed here for reference, but is not necessary for review in this stage.

Binary Adder Tutorial Using Nios II

A link to the video describing the Binary Adder Tutorial:

http://www.youtube.com/watch?v=bKA3mNYTl2g

http://www.youtube.com/watch?v=bM4uHq9hlmQ

The major steps were:

1) Create hardware system in system builder

2) Build new system in QSys system

3) Instantiate the Nios II module in top level entity

4) Add IP variation file

5) Adjust .sdc

6) Place design on FPGA

7) Develop Software in Nios II SBT for Eclipse.

Hardware:

 Clock

 Red LEDs

 Switches

 7 segment Hex

 LCD

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.youtube.com/watch?v=bKA3mNYTl2g
http://www.youtube.com/watch?v=bM4uHq9hlmQ

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 45

NIOS II Binary Adder

Step 1: System Builder

1) Open DE2_115_tools->DE2_115_system_builder to find DE2_115_SystemBuilder.exe

2) Name the project under Project Name: Binary_Adder_Nios

3) Check all Components that you will be using: in this Tutorial we are using CLOCK,

LEDx27, 7-Segementx8, Switchx18, and of course the LCD.

4) Click Generate

5) Create a directory for your project and then click save

6) To open this project open the .qpf file

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 46

Step 2: Building Qsys System

1) Open Qsys under tools tab

2) Start by adding a Nios II Processor Core: Under “Component Library”-> Processors ->

Nios II Processor -> Add

a. Select “Nios II/s”

b. Set “Hardware multiplication type” = “None”

c. Disable “Hardware divide”

d. “Finish”

e. Rename Nios to “cpu”

3) On-Chip Memory: Under “Component Library”-> Memories and Memory Controllers ->

On-Chip -> On-Chip Memory (RAM or ROM)-> Click “Add”

a. Block Type list = “Auto”

b. Total Memory size = “204800” to specify 2KB of memory

c. Do not change any other default settings.

d. “Finish”

e. Under the “System Contents” tab, right-click the on-chip memory and rename as

“onchip_mem”

4) JTAG UART: Component Library -> Interface Protocols -> Serial -> JTAG UART ->

Add

a. Do not change any default settings

b. Rename to “jtag_uart”

5) Interval Timer: Component Library -> Peripherals -> Microcontroller Peripherals ->

Interval Timer-> Add

a. Under “Hardware Options” set “Presets” to “Full-Featured”

b. Do not change any other default settings

c. Rename to “sys_clk_timer”

6) System ID Peripheral: Component Library-> Peripherals -> Debug and Performance ->

System ID Peripheral-> Add

a. Do not change any default settings

b. Rename as “sysid”

7) PIO’s: Component Library-> Peripherals -> Microcontroller Peripherals -> PIO -> Add

a. Under “Basic Settings” enter the value of “4” for the box labeled “Width”

b. Do not change any other default settings

c. Finish

d. Rename as “pio_led”

e. For this example us two “pio_led”

f. Repeat these steps for two “pio_sw” with 4 bits of width and change to input.

g. Repeat these steps for pio_hex0 through 7 with widths of 7 bits.

8) LCD: Component Library-> Peripherals -> Display-> Character LCD -> Add

a. Finish

9) Go to the “Connections” column and connect the following ports: (Figure Below)

a. For all the components connect the clock input and outputs to clock_50

b. For all the components connect the Avalon memory mapped slave to the On-chip

memory AMMS.

c. Open the Nios II processor named CPU and change the reset vector and

exception vectors to onchip_memory2

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 47

10) Go to the “Export” column and connect the following ports:

a. Click on “click to export” on the external connection row to activate connection

for all of the led’s, switches and 7 segment display.

b. Click on “click to export” on the external row for the LCD

11) Under Generation click generate

a. Save as “Nios”

b. Once generation is complete coping code from HDL example

Step 2: Quartus HDL Connections

1) Add IP Variation File: Menu bar: Assignments -> Settings

a. Under “Category” -> “Files” -> (…) Browse -> Choose script files for type to

find(*.tcl, *.sdc, *.qip)

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 48

b. Locate and choose the file nios2/synthesis/nios.qip

c. Add to project, click okay and close

2) Copy code under structural coding in Quartus (Code located in the Codes folder under

Binary_Adder_Quartus)

a. Notice LCD_BLON is set to 1'b1;

b. Notice LCD_ON is set to 1'b1;

c. Notice all connections in parenthesis

3) Compile and Run

a. Compile and Run

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 49

Step 3: Develop the Software for Nios II SBT for Eclipse

1) This step relies on the .sopcinfo file created when generating the Qsys system

2) Open Nios II SBT for Eclipse

a) Indicate workspace as your project directory, and create a new file called

“Software” and click “Okay”

b) Set perspective to Nios II: Menu -> Window -> Open Perspective -> Other ->

Nios II

c) Menu -> File -> New -> Nios II Application and BSP from Template

i) Under “Target Hardware Information” select file

<directory>\nios.sopcinfo

ii) Under “Application Project” type “Binary Adder” as “Project Name”

iii) Under “Project Template” select “helloWorld”

iv) Click “Finish”

3) Include C++ code (Code located in the Codes folder under Binary_Adder_Nios2)

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 50

4) Build project

5) Run as Hardware

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 51

Chapter 4 : Video Generation for Text

Display on T-Pad

Introduction
In this chapter, the ALU will be displayed on T-Pad. Switches perform different operation of the ALU.

With switches, different numbers can be displayed and also their ALU operations can be performed.

Hardware

The T-Pad features an 8-inch Amorphous-TFT-LCD panel. The LCD Screen module offers resolution of

(800x600) to provide users the best display quality for developing applications. The LCD panel supports

18-bit parallel RGB data interface.

The hardware is implemented using Altera IP cores on SOPC builder. A phase locked loop (Alt PLL) has

been used to generate the required clocking for the whole system. In this system a 100Mhz clock for the

Nios-II/f have been used, another 100Mhz with -65 phase shift is used to clock the SDRAM in addition to

the required 40Mhz clock for the VGA controller. The figure above shows the block diagram of the

hardware that is implemented in the SOPC builder.

Character Buffer

DMA

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 52

Video Pipeline

A Scatter Gather DMA is used to connect to the VGA Controller as shown in the figure below. A

summary of how video is fed to the VGA Controller is given in the paragraph below.

The Scatter Gather DMA is used for high speed data transfer between two components. It is used to

transfer and merge noncontiguous memory to continuous address space and vice versa. It works in three

modes.

1. Memory to Memory

2. Memory to Data Stream

3. Data Stream to Memory

In this chapter, the SGDMA is used to transfer data from SDRAM to the VGA Stream. So that is option 2

from the above. A timing adapter is used to adjust the timing between the two different streams of data.

In short, it is used to connect two components that require different number of cycles to receive or send

data. A FIFO is a First In First Out queue. It is a dual clock FIFO that is used to match the system clock to

the VGA clock to normalize the flow of pixels to the VGA sink.

 A RGB converter is required to convert the RGB format from BGR0 to BGR.

The VGA Controller requires 18 bit parallel RGB interface. To make the format coming from memory

(24bit RGB) compatible with the VGA sink that is connected to the tPad, we insert RGB Converter. All

these components contribute to generate a video pipeline which enables us to display a video on the tPad.

Software

The LCD screen is initialized and a blank screen can be seen. Switches are toggled to change the number

values and their operation, the result is displayed on the LCD Screen and updated every time switch is

toggled.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 53

Step by Step ALU on T-Pad Tutorial

Hardware Setup

Step 1 : System Setup by using System Builder

 Open System Builder, select Clock, LED, VGA and switches as shown in figure below.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 54

Select HSMC Source as LTC – 8” LCD/Touch Camera as shown below.

Select a project name, for this example we are using “tpad_alu_display” as our project name Click on

Generate and open the folder containing these files.

 Open the folder where the project files are saved and open tpad_alu_display.qpf file. This file will be

opened in quartus II.

Step 2: Quartus II – Hardware Setup

 In Quartus II, the Verilog code will look like this (in blue):

//===

// This code is generated by Terasic System Builder

//===

module tpad_alu_display(

 //////////// CLOCK //////////

 CLOCK_50,

 CLOCK2_50,

 CLOCK3_50,

 //////////// LED //////////

 LEDG,

 LEDR,

 //////////// SW //////////

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 55

 SW,

 //////////// VGA //////////

 VGA_B,

 VGA_BLANK_N,

 VGA_CLK,

 VGA_G,

 VGA_HS,

 VGA_R,

 VGA_SYNC_N,

 VGA_VS,

 //////////// I2C for HSMC //////////

 I2C_SCLK,

 I2C_SDAT,

 //////////// HSMC, HSMC connect to LTC - 8" LCD/Touch/Camera //////////

 CAMERA_D,

 CAMERA_FVAL,

 CAMERA_LVAL,

 CAMERA_PIXCLK,

 CAMERA_RESET_N,

 CAMERA_SCLK,

 CAMERA_SDATA,

 CAMERA_STROBE,

 CAMERA_TRIGGER,

 CAMERA_XCLKIN,

 LCD_B,

 LCD_DEN,

 LCD_DIM,

 LCD_G,

 LCD_NCLK,

 LCD_R,

 TOUCH_BUSY,

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 56

 TOUCH_CS_N,

 TOUCH_DCLK,

 TOUCH_DIN,

 TOUCH_DOUT,

 TOUCH_PENIRQ_N

);

//===

// PARAMETER declarations

//===

//===

// PORT declarations

//===

//////////// CLOCK //////////

input CLOCK_50;

input CLOCK2_50;

input CLOCK3_50;

//////////// LED //////////

output [8:0] LEDG;

output [17:0] LEDR;

//////////// SW //////////

input [17:0] SW;

//////////// VGA //////////

output [7:0] VGA_B;

output VGA_BLANK_N;

output VGA_CLK;

output [7:0] VGA_G;

output VGA_HS;

output [7:0] VGA_R;

output VGA_SYNC_N;

output VGA_VS;

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 57

//////////// I2C for HSMC //////////

output I2C_SCLK;

inout I2C_SDAT;

//////////// HSMC, HSMC connect to LTC - 8" LCD/Touch/Camera //////////

input [11:0] CAMERA_D;

input CAMERA_FVAL;

input CAMERA_LVAL;

input CAMERA_PIXCLK;

output CAMERA_RESET_N;

output CAMERA_SCLK;

inout CAMERA_SDATA;

input CAMERA_STROBE;

output CAMERA_TRIGGER;

output CAMERA_XCLKIN;

output [5:0] LCD_B;

output LCD_DEN;

output LCD_DIM;

output [5:0] LCD_G;

output LCD_NCLK;

output [5:0] LCD_R;

input TOUCH_BUSY;

output TOUCH_CS_N;

output TOUCH_DCLK;

output TOUCH_DIN;

input TOUCH_DOUT;

input TOUCH_PENIRQ_N;

//===

// REG/WIRE declarations

//===

//===

// Structural coding

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 58

//===

Endmodule

Step 3: SOPC Builder Hardware Setup

 Open SOPC Builder Window and add:

CPU

On – Chip memory

 Character Buffer with DMA

 Pixel Buffer

 Pixel Buffer with DMA

 Pixel RGB Resampler

 Pixel Scaler

 Video Clipper

 Alpha Blender

Dual Clock FIFO

 VGA Controller

JTAG UART

SYSID

Touch Panel SPI

Touch Panel penirq

Touch Panel Busy

Altpll_0

Step 3a: Go to the “Connections” column and connect the following ports:

c. For all the components connect the clock input and outputs to clock_50

d. For all the components connect the Avalon memory mapped slave to the On-chip

memory AMMS.

e. Open the Nios II processor named CPU and change the reset vector and

exception vectors to onchip_memory2

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 59

Step 3b: For assignment of base addresses in SOPC Builder:

Click on “Auto assign base addresses” on the main menu bar and “Auto assign IRQ’s” as

shown in figure below:

The complete SOPC Builder system is shown below:

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 60

Note: If you wish to open the complete already designed hardware in SOPC builder, you may open the

file “Video_system.sopcinfo” which is attached to this tutorial.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 61

Step 3c: Click on Generate.

Step 3(d): After you generate the system. Following code is generated:

system (

 // 1) global signals:

 .clk_0(),

 .clocks_VGA_CLK_40_out(),

 .clocks_VGA_CLK_out(),

 .clocks_sys_clk_out(),

 .reset_n(),

 // the_SW

 .in_port_to_the_SW(),

 // the_video_vga_controller

 .VGA_BLANK_from_the_video_vga_controller(),

 .VGA_B_from_the_video_vga_controller(),

 .VGA_CLK_from_the_video_vga_controller(),

 .VGA_DATA_EN_from_the_video_vga_controller(),

 .VGA_G_from_the_video_vga_controller(),

 .VGA_HS_from_the_video_vga_controller(),

 .VGA_R_from_the_video_vga_controller(),

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 62

 .VGA_SYNC_from_the_video_vga_controller(),

 .VGA_VS_from_the_video_vga_controller()

)

Step 3(e): This code should be copied and pasted in the main Verilog (shown previously) under

REG/WIRE declarations section. The modifications are shown in green:

system (

 // 1) global signals:

 .clk_0(CLOCK_50),

 .clocks_VGA_CLK_40_out(),

 .clocks_VGA_CLK_out(),

 .clocks_sys_clk_out(),

 .reset_n(SW[17]),

 // the_SW

 .in_port_to_the_SW(),

 // the_video_vga_controller

 .VGA_BLANK_from_the_video_vga_controller(),

 .VGA_B_from_the_video_vga_controller(B),

 .VGA_CLK_from_the_video_vga_controller(LCD_NCLK),

 .VGA_DATA_EN_from_the_video_vga_controller(LCD_DEN),

 .VGA_G_from_the_video_vga_controller(G),

 .VGA_HS_from_the_video_vga_controller(),

 .VGA_R_from_the_video_vga_controller(R),

 .VGA_SYNC_from_the_video_vga_controller(),

 .VGA_VS_from_the_video_vga_controller()

)

Step 3(f): Compile and run the system.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 63

With this step, the hardware simulation is complete.

Software Setup

This step relies on the .sopcinfo file created when generating the SOPC Builder system

Step 1: Open Nios II SBT for Eclipse

a) Indicate workspace as your project directory, and create a new file called

“Software” and click “Okay”

b) Set perspective to Nios II: Menu -> Window -> Open Perspective -> Other ->

Nios II

c) Menu -> File -> New -> Nios II Application and BSP from Template

i) Under “Target Hardware Information” select file

<directory>\nios.sopcinfo

ii) Under “Application Project” type “Binary Adder” as “Project Name”

iii) Under “Project Template” select “helloWorld”

iv) Click “Finish”

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 64

Basic Software Algorithm

Initialize the screen

screen_x = 319; screen_y = 239;

 char text[16];

 color = 0x0000; // black color

 VGA_box (0, 0, screen_x, screen_y, color); // fill the screen with background

Values of switches are pointed by allocating their base address

volatile int * switch1_ptr = (int *) 0x00101810;

 volatile int * switch2_ptr = (int *) 0x00101820;

 volatile int * switch3_ptr = (int *) 0x00101830;

 volatile int * switch4_ptr = (int *) 0x00101850;

According to the switch position, the operation of ALU is decided.

00 : Addition

01: Subtraction

10: Logical OR

11 : Logical And

if (sel1&sel2)

 {

 sprintf(text_top_VGA, "My ALU");

 sprintf (text,"%d + %d = %d ",number1,number2,number1 + number2);

 }

 else if (!sel1&sel2)

 {

 sprintf(text_top_VGA, "My ALU");

 sprintf (text,"%d - %d = %d ",number1,number2,number1 - number2);

 }

else if (sel1&!sel2)

 {

sprintf(text_top_VGA, "My ALU");

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 65

 sprintf (text,"%d & %d = %d ",number1,number2,number1 & number2);

 }

 else

 {

sprintf(text_top_VGA, "My ALU");

 sprintf (text,"%d | %d = %d ",number1,number2,number1 | number2);

 }

Characters are written on the screen through “VGA_text” function.

void VGA_text(int x, int y, char * text_ptr)

{

 int offset;

 volatile char * character_buffer = (char *) 0x00101000; // VGA character buffer

 offset = (y << 7) + x;

 while (*(text_ptr))

 {

 *(character_buffer + offset) = *(text_ptr); // write to the character buffer

 ++text_ptr;

 ++offset;

 }

}

You can obtain the software code by opening the main.c file which is attached with this

tutorial.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 66

Downloading the design to the board:

Step 1 –For Hardware, compile the respective .sof file on the board as shown below:

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 67

Step 2 – For software, Run the software program under target as Nios II Hardware shown below:

Link to the Video Demonstration:

http://www.youtube.com/watch?v=gSJPt2jvn9E

http://www.youtube.com/watch?v=gSJPt2jvn9E

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 68

Chapter 5 – Integrating Touch Interface of

T-Pad

Introduction
In this chapter, the ALU will be displayed on T-Pad. Different operation of the ALU is performed by

touch interface. With switches, different numbers can be displayed and their ALU operations are

performed by touching the buttons on the screen.

Hardware

The T-Pad features an 8-inch Amorphous-TFT-LCD panel. The LCD Screen module offers resolution of

(800x600) to provide users the best display quality for developing applications. The LCD panel supports

18-bit parallel RGB data interface.

In this chapter, touch features on the LCD Display are used. Hardware implementation to exploit the

touch features on the TPad:

a) A touch_panel_spi

b) A touch_panel_busy

c)A touch_panel_penirq_n

Character

Buffer DMA

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 69

Serial Peripheral Interface (SPI) and a Parallel I/0 (PIO) peripheral implement the touch screen

interface. The SPI peripheral communicates with the Analog Devices AD7843, touch screen digitizer chip

to signal pen_move events. A single PIO captures pen interrupt events, transitions on the pen_down line

from the AD7843 chip to indicate pen_down and pen_up events. The Nios II processor in the system runs

the software that drives the SPI and PIO peripherals. The main commands, which we use in the project to

implement the touch interface, are touch_panel_spi which implements the SPI interface are

touch_panel_spi which implements pen interrupt interface.

The T-Pad has SPI for recognizing touch on a resistive screen. The touch is communicated with the

processor using Serial Peripheral Interface. We need to designate two parallel input ports, one with

interrupt for pen down, for recognizing that the screen is touched. The PIO with interrupt is known as

pen_irq. The PIO without the interrupt is used to indicate if the touch interface is busy or not. If busy, the

touch will not sense any interrupt i.e., touch on the screen.

Software

The LCD screen is initialized and ALU Options will be displayed. Switches are toggled to change the

number values and for a specific ALU operation, screen is touched. The result is displayed on the LCD

Screen and updated every time switch is toggled and/or screen is touched.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 70

Step by Step ALU on T-Pad with Touch Interface Tutorial
Step 1 : Open System Builder, select Clock, LED, VGA ans switches as shown in figure below.

Step 2 : Select HSMC Source as LTC – 8” LCD/Touch Camera as shown below.

Step 3 : Select a project name, for this example we are using “tpad_alu_display” as our project name

Click on Generate and open the folder containing these files.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 71

Step 4 : Open the folder where the project files are saved and open “tpad_alu_display.qpf” file. This file

will be opened in quartus II.

Step 5: In Quartus II, the Verilog code will look like this (in blue):

//===

// This code is generated by Terasic System Builder

//===

module tpad_alu_display(

 //////////// CLOCK //////////

 CLOCK_50,

 CLOCK2_50,

 CLOCK3_50,

 //////////// LED //////////

 LEDG,

 LEDR,

 //////////// SW //////////

 SW,

 //////////// VGA //////////

 VGA_B,

 VGA_BLANK_N,

 VGA_CLK,

 VGA_G,

 VGA_HS,

 VGA_R,

 VGA_SYNC_N,

 VGA_VS,

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 72

 //////////// I2C for HSMC //////////

 I2C_SCLK,

 I2C_SDAT,

 //////////// HSMC, HSMC connect to LTC - 8" LCD/Touch/Camera //////////

 CAMERA_D,

 CAMERA_FVAL,

 CAMERA_LVAL,

 CAMERA_PIXCLK,

 CAMERA_RESET_N,

 CAMERA_SCLK,

 CAMERA_SDATA,

 CAMERA_STROBE,

 CAMERA_TRIGGER,

 CAMERA_XCLKIN,

 LCD_B,

 LCD_DEN,

 LCD_DIM,

 LCD_G,

 LCD_NCLK,

 LCD_R,

 TOUCH_BUSY,

 TOUCH_CS_N,

 TOUCH_DCLK,

 TOUCH_DIN,

 TOUCH_DOUT,

 TOUCH_PENIRQ_N

);

//===

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 73

// PARAMETER declarations

//===

//===

// PORT declarations

//===

//////////// CLOCK //////////

input CLOCK_50;

input CLOCK2_50;

input CLOCK3_50;

//////////// LED //////////

output [8:0] LEDG;

output [17:0] LEDR;

//////////// SW //////////

input [17:0] SW;

//////////// VGA //////////

output [7:0] VGA_B;

output VGA_BLANK_N;

output VGA_CLK;

output [7:0] VGA_G;

output VGA_HS;

output [7:0] VGA_R;

output VGA_SYNC_N;

output VGA_VS;

//////////// I2C for HSMC //////////

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 74

output I2C_SCLK;

inout I2C_SDAT;

//////////// HSMC, HSMC connect to LTC - 8" LCD/Touch/Camera //////////

input [11:0] CAMERA_D;

input CAMERA_FVAL;

input CAMERA_LVAL;

input CAMERA_PIXCLK;

output CAMERA_RESET_N;

output CAMERA_SCLK;

inout CAMERA_SDATA;

input CAMERA_STROBE;

output CAMERA_TRIGGER;

output CAMERA_XCLKIN;

output [5:0] LCD_B;

output LCD_DEN;

output LCD_DIM;

output [5:0] LCD_G;

output LCD_NCLK;

output [5:0] LCD_R;

input TOUCH_BUSY;

output TOUCH_CS_N;

output TOUCH_DCLK;

output TOUCH_DIN;

input TOUCH_DOUT;

input TOUCH_PENIRQ_N;

//===

// REG/WIRE declarations

//===

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 75

//===

// Structural coding

//===

Endmodule

Step 6: Open SOPC Builder Window and add:

CPU

On – Chip memory

 Character Buffer with DMA

 Pixel Buffer

 Pixel Buffer with DMA

 Pixel RGB Resampler

 Pixel Scaler

 Video Clipper

 Alpha Blender

Dual Clock FIFO

 VGA Controller

JTAG UART

SYSID

Touch Panel SPI

Touch Panel penirq

Touch Panel Busy

Altpll_0

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 76

Step 7: Go to the “Connections” column and connect the following ports:

f. For all the components connect the clock input and outputs to clock_50

g. For all the components connect the Avalon memory mapped slave to the On-chip

memory AMMS.

h. Open the Nios II processor named CPU and change the reset vector and

exception vectors to onchip_memory2

Step 8: For assignment of base addresses in SOPC Builder:

Click on “Auto assign base addresses” on the main menu bar and “Auto assign IRQ’s” as

shown in figure below:

The complete SOPC Builder system is shown below:

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 77

Note: If you wish to open the complete already designed hardware in SOPC builder, you may open the

file “Video_system.sopcinfo” which is attached to this tutorial.

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 78

Step 9 : Click on Generate.

Step 10 : After you generate the system. Following code is generated:

system (

 // 1) global signals:

 .clk_0(),

 .clocks_VGA_CLK_40_out(),

 .clocks_VGA_CLK_out(),

 .clocks_sys_clk_out(),

 .reset_n(),

 // the_SW

 .in_port_to_the_SW(),

 // the_video_vga_controller

 .VGA_BLANK_from_the_video_vga_controller(),

 .VGA_B_from_the_video_vga_controller(),

 .VGA_CLK_from_the_video_vga_controller(),

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 79

 .VGA_DATA_EN_from_the_video_vga_controller(),

 .VGA_G_from_the_video_vga_controller(),

 .VGA_HS_from_the_video_vga_controller(),

 .VGA_R_from_the_video_vga_controller(),

 .VGA_SYNC_from_the_video_vga_controller(),

 .VGA_VS_from_the_video_vga_controller()

)

Step 11: This code should be copied and pasted in the main Verilog (shown previously) under REG/WIRE

declarations section. The modifications are shown in green:

system (

 // 1) global signals:

 .clk_0(CLOCK_50),

 .clocks_VGA_CLK_40_out(),

 .clocks_VGA_CLK_out(),

 .clocks_sys_clk_out(),

 .reset_n(SW[17]),

 // the_SW

 .in_port_to_the_SW(),

 // the_video_vga_controller

 .VGA_BLANK_from_the_video_vga_controller(),

 .VGA_B_from_the_video_vga_controller(B),

 .VGA_CLK_from_the_video_vga_controller(LCD_NCLK),

 .VGA_DATA_EN_from_the_video_vga_controller(LCD_DEN),

 .VGA_G_from_the_video_vga_controller(G),

 .VGA_HS_from_the_video_vga_controller(),

 .VGA_R_from_the_video_vga_controller(R),

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 80

 .VGA_SYNC_from_the_video_vga_controller(),

 .VGA_VS_from_the_video_vga_controller()

)

Step 12: Compile and run the system.

With this step, the hardware simulation is complete.

Software Setup

This step relies on the .sopcinfo file created when generating the SOPC System Buider

system.

Open Nios II SBT for Eclipse

Indicate workspace as your project directory, and create a new file called

“Software” and click “Okay”

Set perspective to Nios II:

Menu -> Window -> Open Perspective -> Other -> Nios II

 Menu -> File -> New -> Nios II Application and BSP from Template

Under “Target Hardware Information” select file <directory>\nios.sopcinfo

Under “Application Project” type “Binary Adder” as “Project Name”

Under “Project Template” select “helloWorld”

Click “Finish”

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 81

SOFTWARE Algorithm

 Values of switches are pointed by allocating their base address
volatile int * switch1_ptr = (int *) 0x0b081040;

volatile int * switch2_ptr = (int *) 0x0b081060;

 For displaying different options on the LCD Display :
 sprintf(szText," + ");

 vid_print_string_alpha(rcPlus.left+5, rcPlus.top, COLOR_WHITE, COLOR_BLACK, tahomabold_32, display,

szText);

 vid_draw_round_corner_box (rcPlus.left, rcPlus.top, rcPlus.right, rcPlus.bottom, 10, COLOR_WHITE,

DO_NOT_FILL, display);

 sprintf(szText," - ");

 vid_print_string_alpha(rcMinus.left+10, rcMinus.top, COLOR_WHITE, COLOR_BLACK, tahomabold_32,

display, szText);

 vid_draw_round_corner_box (rcMinus.left, rcMinus.top, rcMinus.right, rcMinus.bottom, 10, COLOR_WHITE,

DO_NOT_FILL, display);

 sprintf(szText," & ");

 vid_print_string_alpha(rcAnd.left+5, rcAnd.top, COLOR_WHITE, COLOR_BLACK, tahomabold_32, display,

szText);

 vid_draw_round_corner_box (rcAnd.left, rcAnd.top, rcAnd.right, rcAnd.bottom, 10, COLOR_WHITE,

DO_NOT_FILL, display);

 sprintf(szText," | ");

 vid_print_string_alpha(rcOr.left+10, rcOr.top, COLOR_WHITE, COLOR_BLACK, tahomabold_32, display,

szText);

 vid_draw_round_corner_box (rcOr.left, rcOr.top, rcOr.right, rcOr.bottom, 10, COLOR_WHITE, DO_NOT_FILL,

display);

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 82

 For touch display, different cases are referred for each option selected, which is discussed in

the next section.
 alt_touchscreen_get_pen(screen, (&pen_data.pen_down), (&pen_data.x), (&pen_data.y));

 if (PtInRect(&rcPlus, pen_data.x, pen_data.y)){

 select = 0;

 }

 if (PtInRect(&rcMinus, pen_data.x, pen_data.y)){

 select = 1;

 }

 if (PtInRect(&rcAnd, pen_data.x, pen_data.y)){

 select = 2;

 }

 if (PtInRect(&rcOr, pen_data.x, pen_data.y)){

 select = 3;

 }

 For different ALU options, case statements are used.

 switch (select)

 {

 case 0:

 result = number1 + number2;

 sprintf (szText,"%d (+) %d = %d ",number1,number2,result);

 printf ("%d + %d = %d ",number1,number2,result);

vid_print_string_alpha(400, 300, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display,

szText);

 break;

 case 1:

 result = number1 - number2;

 sprintf (szText,"%d (-) %d = %d ",number1,number2,result);

 printf ("%d - %d = %d ",number1,number2,result);

vid_print_string_alpha(400, 300, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display,

szText);

 break;

 case 2:

 result = number1 & number2;

 sprintf (szText,"%d (&) %d = %d ",number1,number2,result);

 printf ("%d & %d = %d ",number1,number2,result);

vid_print_string_alpha(400, 300, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display,

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 83

szText);

 break;

case 3:

 result = number1 | number2;

 sprintf (szText,"%d (|) %d = %d ",number1,number2,result);

 printf ("%d | %d = %d ",number1,number2,result);

vid_print_string_alpha(400, 300, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display,

szText);

 break;

 }

 THE LCD Display screen is updated.
 alt_video_display_register_written_buffer(display);

 while(alt_video_display_buffer_is_available(display) != 0);

You can obtain the software code by opening the main.c file which is attached with this

tutorial.

Downloading the design to the board

a) –For Hardware, compile the respective .sof file on the board as shown below:

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 84

b) – For software, Run the software program under target as Nios II Hardware shown below:

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 85

Link of Video Demonstration
http://www.youtube.com/watch?v=nvzwhp5aRSE

http://www.youtube.com/watch?v=nvzwhp5aRSE

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 86

Chapter 6: Video Generation for Text and Image Display on T-Pad

Introduction
In this chapter, the ALU will be displayed on T-Pad with an image in the background. Terasic T-Pad

provides a touch screen, which enables us to incorporate a video component. The strong multimedia

capabilities of the T-Pad are used to develop an application that would ease the process of viewing an

image from a SD Card. SD Card is used to access the images/pictures because every Digital single-lens

reflex (DSLR) camera used in the modern day stores clicked images on it. Moreover, these images are

generally in JPEG format and hence the user can store a large quantity of images on the card.

The ALU with image at the background supports following functionalities

1. Mounting a SD Card and reading files from it.

2. Displaying pictures on the touch screen display.

3. A simple ALU on the top of the image.

4. Intuitive touch to perform various functions of the ALU.

Hardware Description:

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 87

The hardware can be broken down in the following subsystems.

1. Memory Subsystem

2. Video Pipeline Subsystem

3. Touch Panel Subsystem

Memory Subsystem

The FPGA provides multiple options for memory storage. It provides on chip memory, off chip SRAM

FLASH and SDRAM and a SD Card SPI interface. In this chapter, SDRAM is used as a source for the

Scatter Gather DMA for VGA controller. SRAM is not used for this particular design. On-chip memory

of the Cyclone 4 FPGA is used to store local data for the application program run on Nios II processor.

The stack for the application is built in the on chip memory itself for faster access. Flash memory is

included in the system for program code storage. Flash programmer in Nios II IDE is used to program the

code into the flash. When this is done, the FPGA will boot up with the Nios II processor for image

display and the application will load automatically.

 The SD Card controller needs to be included to provide appropriate control and data signals

for SPI interface, which connects the SD Card socket to the processor. Image from the SD Card will be

read out using simple memory pointers. The SDRAM is used as a frame buffer to store images for the

VGA controller to read. The SD Card cannot feed images to the VGA controller and hence SDRAM is

required as a buffer to connect to the VGA controller.

Software Design

For software implementation the VGA module, touch screen and SD Card are initialized first. Then a

home screen appears on the T-Pad which allows the user to touch and initialize the SD Card to read the

images. After the image is displayed by the pixel buffer on the T-Pad, the character buffer displays the

ALU options. After the user selects/touch one of the options of ALU, the character buffer is refreshed

and the result is displayed. After the result is displayed, the software waits for the touch input to any other

option and respective results are shown.

For initializing the touch screen and the VGA, Hardware Abstraction Layer is used provided by Altera.

The SD card controller is initialized using SPI. Once these components are initialized, the home screen

appears on the T-Pad’s screen. After the user selects a particular mode, images are read one by one from

the SD Card. Then using JPEG library, we decode the image data into hex format. This hex data is passed

to the buffer and pushed into video pipeline. Image corresponding to this data is then displayed. The

latency with which the image is displayed depends on the size of the hex data and therefore ultimately on

the image size. The flow chart for the software is shown below:

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 88

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 89

 Step by Step ALU with image in background Tutorial

Hardware Setup

 Step 1 : Open System Builder, select Clock, SDRAM, SRAM, FLASH, SD CARD, VGA and LTC – 8”

LCD/Touch/Camera as shown in figure below.

Step 2 : Select a project name, for this example we are using “picture_alu” as our project name. Click on

Generate and open the folder containing these files.

Step 3: Open the folder where the project files are saved and open picture_alu.qpf file. This file is

generated when we generate in the above step. Open the respective folder for this file. This file will be

opened in Quartus II.

Step 4: In Quartus II, the Verilog code will look like this (in blue):

//===

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 90

// This code is generated by Terasic System Builder

//===

module picture_alu(

 //////////// CLOCK //////////

 CLOCK_50,

 CLOCK2_50,

 CLOCK3_50,

 //////////// LCD //////////

 LCD_BLON,

 LCD_DATA,

 LCD_EN,

 LCD_ON,

 LCD_RS,

 LCD_RW,

 //////////// SDCARD //////////

 SD_CLK,

 SD_CMD,

 SD_DAT,

 SD_WP_N,

 //////////// VGA //////////

 VGA_B,

 VGA_BLANK_N,

 VGA_CLK,

 VGA_G,

 VGA_HS,

 VGA_R,

 VGA_SYNC_N,

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 91

 VGA_VS,

 //////////// I2C for HSMC //////////

 I2C_SCLK,

 I2C_SDAT,

 //////////// SDRAM //////////

 DRAM_ADDR,

 DRAM_BA,

 DRAM_CAS_N,

 DRAM_CKE,

 DRAM_CLK,

 DRAM_CS_N,

 DRAM_DQ,

 DRAM_DQM,

 DRAM_RAS_N,

 DRAM_WE_N,

 //////////// SRAM //////////

 SRAM_ADDR,

 SRAM_CE_N,

 SRAM_DQ,

 SRAM_LB_N,

 SRAM_OE_N,

 SRAM_UB_N,

 SRAM_WE_N,

 //////////// Flash //////////

 FL_ADDR,

 FL_CE_N,

 FL_DQ,

 FL_OE_N,

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 92

 FL_RST_N,

 FL_RY,

 FL_WE_N,

 FL_WP_N,

 //////////// HSMC, HSMC connect to LTC - 8" LCD/Touch/Camera //////////

 CAMERA_D,

 CAMERA_FVAL,

 CAMERA_LVAL,

 CAMERA_PIXCLK,

 CAMERA_RESET_N,

 CAMERA_SCLK,

 CAMERA_SDATA,

 CAMERA_STROBE,

 CAMERA_TRIGGER,

 CAMERA_XCLKIN,

 LCD_B,

 LCD_DEN,

 LCD_DIM,

 LCD_G,

 LCD_NCLK,

 LCD_R,

 TOUCH_BUSY,

 TOUCH_CS_N,

 TOUCH_DCLK,

 TOUCH_DIN,

 TOUCH_DOUT,

 TOUCH_PENIRQ_N

);

//===

// PARAMETER declarations

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 93

//===

//===

// PORT declarations

//===

//////////// CLOCK //////////

input CLOCK_50;

input CLOCK2_50;

input CLOCK3_50;

//////////// LCD //////////

output LCD_BLON;

inout [7:0] LCD_DATA;

output LCD_EN;

output LCD_ON;

output LCD_RS;

output LCD_RW;

//////////// SDCARD //////////

output SD_CLK;

inout SD_CMD;

inout [3:0] SD_DAT;

input SD_WP_N;

//////////// VGA //////////

output [7:0] VGA_B;

output VGA_BLANK_N;

output VGA_CLK;

output [7:0] VGA_G;

output VGA_HS;

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 94

output [7:0] VGA_R;

output VGA_SYNC_N;

output VGA_VS;

//////////// I2C for HSMC //////////

output I2C_SCLK;

inout I2C_SDAT;

//////////// SDRAM //////////

output [12:0] DRAM_ADDR;

output [1:0] DRAM_BA;

output DRAM_CAS_N;

output DRAM_CKE;

output DRAM_CLK;

output DRAM_CS_N;

inout [31:0] DRAM_DQ;

output [3:0] DRAM_DQM;

output DRAM_RAS_N;

output DRAM_WE_N;

//////////// SRAM //////////

output [19:0] SRAM_ADDR;

output SRAM_CE_N;

inout [15:0] SRAM_DQ;

output SRAM_LB_N;

output SRAM_OE_N;

output SRAM_UB_N;

output SRAM_WE_N;

//////////// Flash //////////

output [22:0] FL_ADDR;

output FL_CE_N;

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 95

inout [7:0] FL_DQ;

output FL_OE_N;

output FL_RST_N;

input FL_RY;

output FL_WE_N;

output FL_WP_N;

//////////// HSMC, HSMC connect to LTC - 8" LCD/Touch/Camera //////////

input [11:0] CAMERA_D;

input CAMERA_FVAL;

input CAMERA_LVAL;

input CAMERA_PIXCLK;

output CAMERA_RESET_N;

output CAMERA_SCLK;

inout CAMERA_SDATA;

input CAMERA_STROBE;

output CAMERA_TRIGGER;

output CAMERA_XCLKIN;

output [5:0] LCD_B;

output LCD_DEN;

output LCD_DIM;

output [5:0] LCD_G;

output LCD_NCLK;

output [5:0] LCD_R;

input TOUCH_BUSY;

output TOUCH_CS_N;

output TOUCH_DCLK;

output TOUCH_DIN;

input TOUCH_DOUT;

input TOUCH_PENIRQ_N;

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 96

//===

// REG/WIRE declarations

//===

//===

// Structural coding

//===

endmodule

This step initiates all the ports selected on system builder.

Step 5: Open SOPC Builder Window and add the following components from library (detailed procedure

is explained in chapter no.3):

alt_pll

CPU

System id

SD RAM

Tri State Bridge Flash

Flash

 SRAM

On chip Memory

SGDMA Controller

Timing Adapter

On Chip FIFO Memory

Timing Adapter

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 97

Pixel Converter

VGA Sink

Peripheral Bridge

Sd Card Controller

Interval Timer

Touch Panel

Touch Panel SPI

Touch Panel penirq

Touch Panel Busy

Step 6: Go to the “Connections” column and connect the following ports:

i. Pll_slave(system clock) is connected to cpu, jtag_uart, sysid, sdram, tri_state

bridge flas, cfi_flash, sram, on chip memory, SGDMA Controller, Fifo and

peripheral bridge

j. CPU’s jtag_debug_module to SDRAM, Tristate Bridge, SRAM.

k. SDRAM to SGDMA Controller’s “m_read”.

l. Descriptor Memory to SGDMA Controller’s “Descriptor Read”

m. Descriptor Memory to SGDMA Controller’s “Descriptor Write”

n. SGDMA Controller’s out to Timing Adapter’s “in”.

o. Timing Adapter’s “out” to FIFO’s “in”.

p. FIFO’s “out” to Pixel Converter’s “in”.

q. Pixel Converter’s “out” to VGA_Sink.

r. SD Card Controller to System Clock Timer, Touch Panel SPI, Touch_Panel_irq_n

and Touch_Panel_busy.

s. Open the Nios II processor named CPU and change the reset vector and

exception vectors to onchip_memory2

Step 7: For assignment of base addresses in SOPC Builder:

Click on “Auto assign base addresses” on the main menu bar and “Auto assign IRQ’s” as

shown in figure below:

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 98

The complete SOPC Builder system is shown below:

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 99

If you wish to open the complete already designed hardware in SOPC builder, you may open the file

“nios_simple.sopcinfo” which is attached to this tutorial.

To generate the hardware in sopc builder, click on generate shown in the figure below:

After the sopc builder system is generated:

We get the following code:

wire reset_n;

wire [7:0] wire_HC_B;

wire [7:0] wire_HC_G;

wire [7:0] wire_HC_R;

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 100

assign reset_n = 1'b1;

assign HC_DIM = 1'b1;

nios_simple nios_simple_ins(

 // 1) global signals:

 .clk_ext(CLOCK_50),

 .reset_n(reset_n),

 //.altpll_25(),

 // .altpll_io(),

 .clk_sdram(DRAM_CLK),

 //.clk_sdram(DRAM_CLK),

 //.clk_pixel(HC_NCLK),

 ////VGA SINK

 .vga_b_from_the_vga_source (wire_HC_B),

 .vga_clk_from_the_vga_source (HC_NCLK),

 .vga_de_from_the_vga_source (HC_DEN),

 .vga_g_from_the_vga_source (wire_HC_G),

 .vga_hs_from_the_vga_source (),

 .vga_r_from_the_vga_source (wire_HC_R),

 .vga_vs_from_the_vga_source (),

 // the_sdram

 .zs_addr_from_the_sdram(DRAM_ADDR),

 .zs_ba_from_the_sdram(DRAM_BA),

 .zs_cas_n_from_the_sdram(DRAM_CAS_N),

 .zs_cke_from_the_sdram(DRAM_CKE),

 .zs_cs_n_from_the_sdram(DRAM_CS_N),

 .zs_dq_to_and_from_the_sdram(DRAM_DQ),

 .zs_dqm_from_the_sdram(DRAM_DQM),

 .zs_ras_n_from_the_sdram(DRAM_RAS_N),

 .zs_we_n_from_the_sdram(DRAM_WE_N),

 // the_sd_card_controller

 .spi_clk_from_the_sd_card_controller (SD_CLK),

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 101

 .spi_cs_n_from_the_sd_card_controller (SD_DAT[3]),

 .spi_data_in_to_the_sd_card_controller (SD_DAT[0]),

 .spi_data_out_from_the_sd_card_controller (SD_CMD),

 ////cfi flash

 .tri_state_bridge_flash_address (FL_ADDR),

 .tri_state_bridge_flash_data (FL_DQ),

 .write_n_to_the_cfi_flash (FL_WE_N),

 .read_n_to_the_cfi_flash (FL_OE_N),

 .select_n_to_the_cfi_flash (FL_CE_N),

 ////touch panel interface

 .MISO_to_the_touch_panel_spi (HC_ADC_DOUT),

 .MOSI_from_the_touch_panel_spi (HC_ADC_DIN),

 .SCLK_from_the_touch_panel_spi (HC_ADC_DCLK),

 .SS_n_from_the_touch_panel_spi (HC_ADC_CS_N),

 .in_port_to_the_touch_panel_pen_irq_n (HC_ADC_PENIRQ_N),

 .in_port_to_the_touch_panel_busy (HC_ADC_BUSY),

 ////SRAM

 .SRAM_ADDR_from_the_sram (SRAM_ADDR),

 .SRAM_CE_n_from_the_sram (SRAM_CE_N),

 .SRAM_DQ_to_and_from_the_sram (SRAM_DQ),

 .SRAM_LB_n_from_the_sram (SRAM_LB_N),

 .SRAM_OE_n_from_the_sram (SRAM_OE_N),

 .SRAM_UB_n_from_the_sram (SRAM_UB_N),

 .SRAM_WE_n_from_the_sram (SRAM_WE_N)

);

////

assign HC_B = wire_HC_B[7:2];

assign HC_G = wire_HC_G[7:2];

assign HC_R = wire_HC_R[7:2];

// Flash Config

assign FL_RST_N = reset_n;

assign FL_WP_N = 1'b1;

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 102

// FLASH_RY,

///

// LCD config

assign LCD_BLON = 0; // not supported

assign LCD_ON = 1'b1; // alwasy on

This code should be copied and pasted in the main Verilog (shown previously) under REG/WIRE

declarations section.

With this step our hardware configuration is done.

After this step, open Nios II IDE Eclipse and write software to configure software of the demonstration.

Software Setup

Basic Algorithm:

1) Display is initialized.

 display_global = alt_video_display_init("/dev/sgdma_pixel", // Name of video controller
 WIDTH, // Width of display
 HEIGHT, // Height of display
 32, // Color depth (32 or 16)
 SDRAM_BASE+SDRAM_SPAN/2, // Where we want our frame buffers
 DESCRIPTOR_MEM_BASE, // Where we want our descriptors
 NUM_FRAME);
 if(display_global)

2) Touch Panel is initialized.

 hTouch = Touch_Init(TOUCH_PANEL_SPI_BASE, TOUCH_PANEL_PEN_IRQ_N_BASE,

TOUCH_PANEL_PEN_IRQ_N_IRQ);

3) Welcome screen is displayed . The following commands are used to display characters on

the screen.

 sprintf(szText,"\nCalculator ");

 vid_print_string_alpha(400, 2, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display_global, szText);

 sprintf(szText,"\nTouch Anywhere to Begin");

 vid_print_string_alpha(220, 200, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display_global, szText);

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 103

 //vid_draw_round_corner_box (300, 400, 500, 500,10, 0x5555, 0x0000, display_global);

4) After the touch is selected , pixel buffer and character buffer gets updated.

 alt_video_display_clear_screen(display_global, 0x0);

 result = write_buffer(display_global,name_list[pic_index],frame_write_index);

alt_video_display_register_written_buffer(display_global); ////direct the display buffer to buffer_being_written

 while(alt_video_display_buffer_is_available(display_global)!=0); ////update display_global- >buffer_being_displayed

 printf("\nLook at the the screen");

 x=0;
 y=0;

 sprintf(text_disp,"ADDITION");

vid_print_string_alpha(50, 200, COLOR_WHITE, COLOR_BLACK, tahomabold_20,

display_global, text_disp);

 sprintf(text_disp,"SUBTRACTION");

vid_print_string_alpha(200, 200, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display_global, text_disp);

 sprintf(text_disp,"LOGICAL AND");

vid_print_string_alpha(400, 200, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display_global, text_disp);

 sprintf(text_disp,"LOGICAL OR");

vid_print_string_alpha(600, 200, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display_global, text_disp);

 Touch_EmptyFifo(hTouch);

 Touch_EmptyFifo(hTouch) is used to empty the touch input

5) The screen waits for the touch input in trigger area which will perform ALU functions.

For example:

 if (touch == 0 && (x >= 50 && x<=150)) //Trigger area

{

 printf("I am in addition loop\n x=%d y = %d", x, y);// display statement on console for debugging

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 104

 touch = 1;

 x=0;

 y=0;

 result = write_buffer(display_global,name_list[pic_index],frame_write_index);

 sprintf(text_calc,"10 + 5 = 15");

 vid_print_string_alpha(350, 410, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display_global, text_calc);

 sprintf(text_disp,"ADDITION");

 vid_print_string_alpha(50, 200, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display_global, text_disp);

 sprintf(text_disp,"SUBTRACTION");

 vid_print_string_alpha(200, 200, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display_global, text_disp);

 sprintf(text_disp,"LOGICAL AND");

 vid_print_string_alpha(400, 200, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display_global, text_disp);

 sprintf(text_disp,"LOGICAL OR");

 vid_print_string_alpha(600, 200, COLOR_WHITE, COLOR_BLACK, tahomabold_20, display_global, text_disp);

 usleep(100000);

 Touch_EmptyFifo(hTouch);

 goto here; // label to take it back to the main loop

6) The screen performs respective functions according to which trigger area is touched.

Alternatively you can obtain the software code by opening the main.c file which is attached with this

tutorial.

Downloading the design to the Board

a) –For Hardware, compile the .sof file on the board as shown below:

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 105

b) – For software, Run the software program under target as Nios II Hardware shown below:

SFSU - Embedded Systems Tutorial Nano- Electronics & Computing Research Lab 106

Video Demonstration of this tutorial is available on YouTube by clicking here:

http://www.youtube.com/watch?v=_epPtQ-lTuQ

http://www.youtube.com/watch?v=_epPtQ-lTuQ

